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OverviewClustering problems, sometimes also formulated as graph ut problems, are often stated asinstanes of disrete ombinatorial optimization problems. As suh they are often NP-hard.Thus, people have developed heuristis and relaxations, though often without any theoretialguarantees on the solution. Here, we onsider the lustering problem as a statistial learningproblem and try to approximate the best partition of the entire underlying spae. Statingthe problem in the statistial setting opens ways to remedy the exponential runtime bymodifying the optimization problem to simultaneously ahieve statistial onsisteny of thealgorithm. Consisteny means that, as the number of samples inreases, the quality of thereturned partition will onverge to the quality of the true global optimizer on the underlyingspae.To ahieve this goal, we present two approahes. First, we add a margin riterion to theobjetive to indue loal robustness of the preferred partition. This leads to a mixed integerlinear program that we also state in the ontext of �ow algorithms.Seond, we restrit the set of andidate funtions via neighborhood ells around seednodes, and optimize the original riterion on this limited funtion spae. The resultingalgorithm, nearest neighbor lustering (NNC), is statistially onsistent and does run inpolynomial time by onstrution. The average runtime is improved via branh and boundand ertain heuristis that still guarantee the optimal solution. We show that, despite itssimpliity, NNC performs omparably to standard lustering algorithms on the training setand with respet to generalization.Both approahes are motivated and disussed from a theoretial viewpoint as well asinvestigated in experiments.
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Chapter 1IntrodutionDeep in onentration, Mr Biss investigates the rypti data in front of him, revealingrelations of various types. Where are ommunities in that graph? If he ould just ome upwith a nie partition of the ustomers, into market segments for example. The boss wouldbe impressed by suessful produt positioning and identi�ed target markets. At the sametime and some bloks ahead, Dr. G.N. stares at expression patterns of genes his studentmeasured in a big miroarray. Groups of o-expressed genes might give him insight into newfuntional relations. His olleague nearby raks his brains to �nd homologous sequenes tostudy gene families, while the librarian downstairs wishes for a method to order the massof artiles on her omputer by topi, maybe via key words.All these people's problems share a ommon basis: group a set of given data points (thatmay be onsidered samples from a larger population) suh that points within a group are�similar�, and points from di�erent groups have few things in ommon. In short, they aretrying to solve a lustering problem, possibly with a statistial bakground. Clustering hasa wide range of appliations in areas suh as image proessing, layout of eletrial iruits,biology, soial sienes, psyhology and network analysis.In the following, we onsider the given �training data� set {X1, . . . , Xn} to be a sam-ple from a distribution P on some underlying spae X . A similarity or distane funtionmeasures relations or �loseness� between two points. Stated like this, lustering is an un-supervised learning problem.In this setting, it an be interpreted as a graph partitioning problem: The points Xiorrespond to nodes in the graph, and edge weights between nodes de�ne similarities. Wethen seek to ut the graph into parts suh that there are few onnetions between the parts,but the nodes within a part are densely onneted.The properties of a �good� partition or lustering are ommonly aptured by a qualityfuntion Q (or Qn) that assigns a quality value to eah possible partition. The goal is thento �nd the partition optimizing this funtion.A vast amount of researh, from areas ranging from ombinatoris, statistis, algorithmanalysis, optimization, network and graph theory, to soial sienes, has been devoted toalgorithms, models, theoretial properties of lustering as well as de�nitions of a good parti-tion and quality measures for lusterings. Hene we annot enumerate all approahes here.The algorithms may be divided into hierarhial and partitional methods. Hierarhial lus-tering subsequently splits the data into smaller groups (divisive or top-down), or, bottomup, joins similar groups (agglomerative) until the desired number of lusters is reahed.Partitional methods, whih we onsider in this report, do not reate suh a tree but split9



the data at one. Alternatively, approahes to lustering an be ategorized by the datamodel they assume. We will detail suh a distintion in the next setion.1.1 Two approahes to lusteringIn view of the data model, the lustering problem an be viewed from two perspetives. Onthe one hand, we onsider the given sample of size n as an independent, separate data set,that means an instane of a ertain problem, and hene try to �nd the best partition of thosepoints by optimizing a quality funtion Qn on this data set. This approah traditionallyleads to a disrete optimization problem and ombinatorial algorithms. On the other hand,we may view the given data as a sample from an underlying data spae X endowed with aprobability measure, and thus use the sample to estimate a good partition of the entire spae.Ideally, lusters are distint regions of high density. The quality of the ontinuous partitionis measured by a funtion Q, and Qn is its estimator on a �nite sample. This is the approahtaken by statistial learning theory. In this statistial setting, however, the lustering withthe best quality on the disrete data set may not be the disrete orrespondent of the optimalpartition of the spae. In other words, the optimizers of Q and Qn are not equivalent. Inthe following, we take a loser look at both approahes.1.1.1 The �disrete optimization� approahThe �disrete optimization� approah states lustering as an optimization problem on the�xed data set {X1, . . . , Xn}, in general a minimization of a partiular quality funtion Qn,possibly with additional onstraints.For many objetive funtions, espeially those inluding a balane riterion on lustersizes, the optimization beomes NP-hard [see e.g. Kannan et al., 2004, Shi and Malik, 2000,Wagner and Wagner, 1993℄. The di�ulty of the optimization is grounded in the numberof possible partitions. The number of distint assignments of n points to K lusters isexponential in n [Hastie et al., 2001, p. 461℄:
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)
in.If the behavior of the objetive funtion for small hanges in the assignment is not simple, asfor purely additive riteria suh as Minut (see Setion 1.2.1), then we must searh throughan exponential number of partitions.To avoid exponential runtimes, people usually revert to heuristis or relaxations, tradingruntime for an approximate, suboptimal solution. A ommon ompromise is to use iterativegreedy desents [Hastie et al., 2001, Ch. 14.3.5℄ like the k-means algorithm, guaranteedto �nd a loal optimum but not neessarily the global minimizer. The behavior of k-means, for instane, is sensitive to the initialization [see e.g. Milligan, 1980, Peña et al.,1999℄. Alternatively, relaxations of ertain onstraints an make the problem easier to solve,with a loss in the optimality of the solution. Spetral lustering is an example for suh arelaxation [see e.g. von Luxburg, 2006℄. For some variants of spetral lustering, ertainworst-ase guarantees an be proved [e.g. Kannan et al., 2004℄. Spielman and Teng [1996℄show approximation guarantees on bounded-degree planar graphs and �nite element meshes.Nevertheless, for the RatioCut objetive, there are examples where spetral lustering willnot �nd a good partition [Guattery and Miller, 1995℄. For many algorithms, no statementsan be made about how far the approximate solution is to the optimal one.10



Only simple objetives keep the exat optimization in P. Minut, for example, an beast as a Max�ow problem by duality theory. A number of algorithms solve the lattere�iently [see e.g. Papadimitriou and Steiglitz, 1982, Ch. 6, Ahuja et al., 1993, Ch. 6�8℄.1.1.2 A glimpse on Statistial Learning TheoryAlternatively, the data may be seen as a sample from a larger distribution, as in StatistialLearning Theory (SLT). In the following, we give an overview of SLT with a fous onlassi�ation. For a detailed introdution, refer to Devroye et al. [1996℄, Vapnik [2001℄,for instane. The goal in SLT is to learn rules or estimators based on a �nite olletionof training examples rather than predetermined probability models. Hene, SLT appliesto problems whose physis are di�ult to model, and there is not su�ient experiene foraurate and omplete probability models [Nowak, 2007a℄.Classi�ationIn lassi�ation, we are given a sample {(X1, Y1), . . . , (Xn, Yn)} ⊆ X × {+1,−1} of points
Xi and their true labels Yi. Those points are drawn i.i.d. from an unknown probabilitydistribution P (X, Y ) on X × {+1,−1}. Our goal is to infer a funtion f : X 7→ {+1,−1}that orretly predits the labels of all points from X . A loss funtion L(f(Xi), Yi) spei�esthe ost of a mispredition, for example the 0-1 loss [Vapnik, 2001, p. 19℄

L(f(Xi), Yi) =

{
0 if f(Xi) = Yi

1 otherwise. (1.1.1)The overall expeted risk or loss,
R(f) = E(X,Y )[L(f(X), Y ] =

∫
L(f(X), Y )dP (X, Y ), (1.1.2)indiates the quality of a partition f that we aim to optimize by hoosing the best f froma hypothesis spae F . Formally, we seek to �nd

f∗ = argmin
f∈F

R(f).In more general terms, we de�ne a quality funtion Q : F → R that measures the goodnessof a andidate preditor, and then try to �nd the f ∈ F minimizing this riterion Q. Inlassi�ation, the quality is measured by the expeted rate of mispreditions, so Q(f) =
R(f).Learning needs assumptionsFor this inferene of f , however, we need take some general priniples into aount [Bousquetet al., 2004℄. Learning is only possible with assumptions. Without assumptions, the trainingpoints arry no information about the labels of future observations. If we �x the labels of thetraining points, we an still label all other points arbitrarily. Whih suh labeling is the best?This dilemma is summarized in the No Free Lunh Theorem. First, the future observations,for whih labels will be predited, must be related to past ones. Here, this means theystem from the same or distribution P (X, Y ) or at least a related one. Another importantassumption is ontinuity: if X is similar to the training point Xi, then Y is expeted to be11



Figure 1.1.1: Example for over�tting.The X are uniformly distributed on theinterval [−5, 5], and the true labeling is
−1 for X < 0 and +1 for X ≥ 0 (dashedline). The training examples are markedby⊗. A preditor fn that only labels the
+1 training examples positively (blakline) will ahieve zero empirial error buta true error of R(fn) = 0.5, whih is theworst possible. See the text for details. −5 −4 −3 −2 −1 0 1 2 3 4 5

similar to Yi. Only if the assumptions hold is it possible to onstrut onsistent algorithms,that is with more training data, the preditions approah the optimal ones. Yet with a �nitedata set, the preditions may be arbitrarily bad, if we an hoose f to be any funtion. Heneand seond, the ability to generalize requires spei� knowledge, suh as assumptions whatthe optimal lassi�er f∗ looks like. We an enode this model for example in the way wede�ne F , restriting it only to �reasonable� andidates. The resulting algorithm works beston problems where these assumptions are atually met.Minimize the riskOne we have �xed the assumptions, how an we �nd a lassi�er with minimal expetederror? Without knowing the exat joint distribution P (X, Y ), we annot ompute the riskfuntional R(f) diretly. Two solutions seem possible: estimate the joint distribution Pfrom the training set, and derive the deision rule from this estimation, or use the trainingset to diretly infer f . Sine the former is usually more di�ult than the diret design ofa rule, we use the latter approah: �When solving a problem, try to avoid solving a moregeneral problem as an intermediate step� [Vapnik, 2001, p. 30℄. We hene estimate R(f) bythe empirial risk
R̂(f) =

1

n

n∑

i=1

L(f(Xi), Yi) = Qn(f). (1.1.3)The minimization of this estimate is the basis of the priniple of Empirial Risk Minimization(ERM). More generally, we de�ne an estimator Qn of Q that works on a �nite sample of npoints, beause we annot ompute Q diretly.The natural question to arise here is whether it makes a di�erene to optimize Qn or Q.By the law of large numbers, R̂(f) onverges to R(f) for any �xed f as n goes to in�nity,like a mean to its expetation. But how muh does the quality Q of fn, an optimizer of Qnfrom F , di�er from Q(f∗), if fn was found with a �nite sample? The law of large numbersholds only for a �xed f , but we an hoose any f ∈ F after seeing the data. And whatabout the speed and variane of onvergene?Let us �rst take a look why these questions may be important. If F is large, then wean �nd an f with zero empirial error for almost any training sample. Figure 1.1.1 showsan extreme example. Consider X to be the interval [−5, +5], and the true labeling −1 forall points smaller than zero (X < 0) and +1 for all points greater or equal to zero. Withthe given training sample and F inluding all funtions from [−5, 5] to {−1, +1}, we mightminimize R̂ by setting fn(Xi) = 1 for all positive training examples, and fn(X) = −1 for12



all other X :
fn(X) =

{
1 for X ∈ {Xi | Yi = 1, 1 ≤ i ≤ n}
−1 otherwise. (1.1.4)Then we have R̂(fn) = 0, but R(fn) = 0.5, whih is as good as random guessing. Thestrategy of setting fn(X) = 1 only for those X that are in the training sample and labeledpositively will yield the orret lassi�er if all possible X are in the training sample. Butwith a �nite sample and a large set of andidates, R̂ may be not enough to judge aboutthe atual quality of a lassi�er. We an ahieve zero training error, but the expeted erroris still large. Thus, a small empirial error annot guarantee a small expeted error. Thisphenomenon is termed over�tting. If F was restrited to pieewise onstant funtions, forinstane, and still R̂(fn) = 0, then R(fn) would derease with signi�ant probability. Let

a be the smallest area around the positive training samples that is ompatible with theminimal length cmin of a onstant piee. If the points are well separated, then a is cmintimes the number of positive training examples. Then R(fn) ≤ 0.5 − a/10. Very likely, agrows as n goes to in�nity, and faster than the integral over all positive samples.So what do we atually need for a reliable inferene priniple?ConsistenyWhat we wish to have is an inferene priniple that returns a preditor fn whose qualityonverges to the optimal quality. To judge it, we require that its empirial quality approahesthe quality of the true minimizer, Q(f∗), in the limit. Then, in the limit, Qn(fn), Q(fn)and Q(f∗) are the same: Qn estimates the quality Q(fn) orretly, and fn is as good as thetrue optimizer. Suh a priniple is onsistent.De�nition 1 (Consisteny). (adapted from [Vapnik, 2001, p. 36℄) The ERM priniple,returning fn for a sample of size n, is onsistent for a set of funtions F and a probabilitydistribution P (X, Y ) if the sequenes Q(fn) and Qn(fn) onverge in probability to the samelimit:
Q(fn)

P−−−−→
n→∞

Q(f∗) (1.1.5)
Qn(fn)

P−−−−→
n→∞

Q(f∗). (1.1.6)Stritly speaking, if the onvergene of the sequenes is only in probability, then thepriniple is weakly onsistent [Devroye et al., 1996, Def. 6.1℄. A re�nement of this de�nitionexludes trivial ases. The priniple is nontrivially onsistent if the onvergene (1.1.6) alsoholds for any subset Fc of F whose members have an error Q(f) of at least c (c ∈ R) [Vapnik,2001, p. 37f℄.Vapnik's �Key Theorem of Learning Theory� [Vapnik, 2001, Thm. 2.1℄ gives a neessaryand su�ient ondition for onsisteny: The empirial quality Qn must onverge uniformly(one-sided), that means for all funtions in F , to the expeted quality Q:
∀ε > 0 lim

n→∞
P{sup

f∈F
(Q(f) − Qn(f)) > ε} = 0If the di�erene between Qn(f) and Q(f) is small for all f ∈ F , then the minimizer of Qnmust still be deent with respet to Q.How an we ahieve uniform onvergene, and how fast or reliable is this onvergene?13



Convergene BoundsThe empirial and true risk behave like a mean and its expetation. Conentration-of-measure inequalities bound the deviation between these two quantities. An appliation ofHoe�ding's inequality to Q = R and Qn = R̂ yields [Bousquet et al., 2004, p. 177℄
P{|Qn(f) − Q(f)| > ε} ≤ 2 exp

(
−2nε2

)
.This bound holds, however, only for one �xed funtion. For a simultaneous bound for all

f ∈ F we onsider the probability that the di�erene deviates for more than ε for any f .If |F| is �nite, then this probability an loosely be bounded by the sum of the deviationprobabilities for eah of the |F| andidates, aording to the rule P (A∪B) ≤ P (A)+P (B).Hene, by this union bound, [Bousquet et al., 2004, p. 178℄
P{sup

f∈F
(Q(f) − Qn(f)) > ε} ≤ 2|F| exp

(
−2nε2

)
= 2 exp

(
ln |F| − 2nε2

)
. (1.1.7)Setting the right hand side to δ, we an rewrite Equation (1.1.7) in terms of on�deneintervals: With probability at least 1 − δ,

Q(f) ≤ Qn(f) +

√
ln |F| + ln(1/δ)

2n
. (1.1.8)Thus, for onvergene, the size of F must grow sub-exponentially in n. But what happensfor an in�nitely large funtion lass? Then the omplexity of F an take the plae of its size.The omplexity measures the rihness of F , for instane, how many di�erent assignmentson a �nite sample an atually be realized by funtions from F . We will outline someomplexity measures below. For the moment, let us denote the omplexity of F by C(F).Complexity measures will be desribed below. If C is the growth funtion, the VC entropyor the annealed entropy, then, by a trik alled symmetrization [Shölkopf and Smola, 2002,Ch. 5.5℄, one an show that (for lassi�ation) [Vapnik, 2001, Ch. 3.1℄, [Shölkopf andSmola, 2002, p. 138℄

P{sup
f∈F

(Q(f) − Qn(f)) > ε} ≤ 4 exp

(
C(F) − nε2

8

)or, with probability at least 1 − δ,
Q(f) ≤ Qn(f) +

√
8

n

(
C(F) + ln

4

δ

)
. (1.1.9)This equation shows that the omplexity of F is inversely related to the on�dene we anhave in Qn(f), and that limn→∞ C(F)/n = 0 is a ondition for uniform onvergene1. Sothe omplexity must grow more slowly than n, or the size of F must be sub-exponential in

n. In the ase of over�tting, Q(fn) and Qn(fn) di�er a lot beause C(F) is big relative to
n. Then a small empirial error does not imply a small expeted error. A restrition of theomplexity of F may thus remedy the problem of over�tting.We an also view these bounds from a di�erent perspetive: �minimizing the risk on asmaller set of funtions requires fewer observations� [Vapnik, 2001, p. 66℄. For a deviationof at most ε with probability 1 − δ, we need at least

n ≥ 8

ε2

(
ln

4

δ
+ C(F)

)1This is atually the ondition for two-sided onvergene, one-sided onvergene has a slightly weakerondition (see Vapnik [2001, Ch. 2.4℄ for details). 14
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Figure 1.1.2: Over- and under�tting depen-dent on the omplexity of F . If F is not suitedfor the problem, then no funtion in F an �tthe data well, and both R̂ and R are high. If
F is very rih, we an �nd an explanation forany data, but this may not be a good �t for theentire spae, beause the estimation error oron�dene interval inreases. (Figure adaptedfrom [Nowak, 2007b, Le. 3℄.)samples. So the sample omplexity n must grow as O(C(f)) for �xed ε and δ. Hene,a funtion lass with restrited omplexity yields a more reliable preditor, provided thatthe lass still ontains reasonable andidates, meaning that the assumptions enoded in Fmath the problem at hand.Before we explore how the omplexity restrition may be implemented in pratie, letus take a step bak and see where our algorithm an fail. Let Q∗ denote the Bayes risk,the minimal ahievable risk if all possible funtions are taken into aount. Note that theorresponding preditor need not be in F . The best we an ahieve within F is Q(f∗) ≥ Q∗.So the deviation of the risk of our outome fn ompared to Q∗ may be divided into twoparts [Nowak, 2007b, Le. 5℄:

Q(fn) − Q∗ = (Q(fn) − Q(f∗))︸ ︷︷ ︸estimation error + (Q(f∗) − Q∗)︸ ︷︷ ︸approximation error .The estimation error is due to the randomness of the training sample, and measures howgood the predition is with respet to the best predition in F . The approximation errormeasures the appropriateness of our assumptions: how muh do the restritions of F impairthe ability to model the problem? The riher F is, the smaller is the approximation error,but, as the bounds above demonstrate, the larger may be the estimation error. Thus, we needto �nd a tradeo� between the minimization of those two errors, regarding the omplexity of
F . How an this tradeo� be implemented in pratie, and how an one measure omplexity?Strategies to avoid over�ttingThere are two basi approahes to limiting the omplexity of the lass of andidate funtions[Nowak, 2007b, Le. 3℄:1. Diretly restrit the size or omplexity of F . This restrits the estimation error by thebounds above, but also sets a lower bound to the approximation error.2. Simultaneously minimize the omplexity and empirial error, by optimizing a modi�edterm: fn = argminf∈F{Qn(f) + λC(f)}. Suh omplexity penalization methods seekto balane the tradeo� between approximation and estimation error. The additionalterm is sometimes also alled a regularizer. The parameter λ usually shrinks with nin pratie and may be hosen by hold-out validation.For lustering, we tried both approahes, a margin-based omplexity penalization method(Chapter 2), and a (data-dependent) restrition of the lass of admissible funtions (Chap-ter 3). 15



In the following, we will mention a seletion of methods implementing those two strate-gies. The method of sieves [Grenander, 1981℄ restrits the funtion spae Fn aording tothe number n of samples available, with |Fi−1| ≤ |Fi|. The preditor fn is the optimizer of
Qn from Fn: fn = argminf∈Fn

Qn(f). The lass Fn is, however, hosen independently ofthe training data. Data-adaptive model spaes are better adapted to the distribution of thedata.The priniple of Strutural Risk Minimization (SRM) [e.g. Vapnik, 2001, Se. 4.1℄ relieson the onstrution of a hierarhial struture F1 ⊆ F2 ⊆ . . . of funtion lasses of growingomplexity. Within eah lass, we hoose the optimizer of the empirial quality Qn. Ofthose optimizers, we hoose the one that yields the best value for a generalization boundlike (1.1.9). This strategy an also be interpreted as a omplexity penalization method:
fn = argminf∈Fi

mini Qn(f) + pen(Fi), where pen is related to the on�dene interval[Bousquet et al., 2004, p. 173℄.Further omplexity penalization methods inlude the minimum desription length prin-iple (MDL) [e.g. Vapnik, 2001, p. 106℄, where omplexity is measured by the number of bitsneeded for the desription of the preditor, via the ompression oe�ient. This oe�ientdepends on the number of andidate funtions and the neessary orretions. The marginof Support Vetor mahines is another measure of omplexity [Shölkopf and Smola, 2002,Se. 7.2℄, and its maximization is also related to a restrition of the omplexity. A onne-tion may also be drawn to Bayesian methods, if the prior is interpreted as the omplexitypenalization [Nowak, 2007b, Le. 3℄.Note that the hoie of the regularizer enodes prior knowledge and assumptions justlike the restrition of F .Measures of ComplexityOver time, a variety of measures of the omplexity of a funtion lass have been rafted. Thefollowing outline of some representatives is mainly based on the desriptions by Shölkopfand Smola [2002, Ch. 5℄ and Vapnik [2001, Ch. 2℄.For lassi�ation, onsider the number of ways a sample of n points an be partitionedby funtions in F . Of ourse this number also depends on the partiular sample. Denoteby N (F ,Zn) the number of ways the sample Zn = {(X1, Y1), . . . , (Xn, Yn)} an be labeledby funtions in F . The maximum suh number over all samples of size n is denoted by theshattering oe�ient N (F , n) = maxZn
N (F ,Zn). If F ontains all possible funtions, thenthis number is 2n. If F is restrited, then there is a limit after whih N (F , n) does not growexponentially in n any more. Hene its logarithm measures omplexity in a similar way as

ln |F|.For the 0-1-loss (Eq. (1.1.1)), we an also get the number of possible partitions as follows:Eah funtion f ∈ F has a loss vetor ξf = (L(f(X1), Y1), . . . , L(f(Xn, Yn))) on the sample
Zn. The number of di�erent loss vetors for the funtions in F equals N (F ,Zn).The expeted logarithm of N (F ,Zn) is the VC entropy HF of F :

HF(n) := EZn
[lnN (F ,Zn)].It measures omplexity analogous to the logarithm of the size of F , and we may thus replae

C(F) = HF(n) in the bound (1.1.9) [Shölkopf and Smola, 2002, p. 138℄. Note that the VCentropy depends on the distribution of (X, Y ) and is thus di�ult to ompute. A similarmeasure is the annealed entropy,
Hann

F (n) = lnEZn
[N (F ,Zn)].16



Sine it upper bounds the VC entropy, it an also be used as C(F) above. More �nely-grained measures, based on ε-overs of F , are entropy and overing numbers [see Shölkopfand Smola, 2002, Se. 12.4.2℄.A distribution-independent upper bound on the VC and annealed entropy is the growthfuntion, the logarithm of the shattering oe�ient:
GF(n) = max

Zn

lnN (F ,Zn).We an use it as C(F) above as well. If F ontains all funtions, then the growth funtion is
n ln 2 for all n. It has been proved that for a restrited F though, there is a maximal number
n = h after whih the growth funtion does not grow linearly in n any more, beause notall possible partitions may be realized by funtions from F any more. This number h is theVC dimension of F . For n > h, the growth funtion only inreases logarithmially in n:
GF (n) ≤ h

(
ln n

h + 1
) [Shölkopf and Smola, 2002, p. 141℄.Shattering oe�ients and related measures onstitute only one possibility to de�neomplexity. The Rademaher average, for instane, aptures the ability of a funtion lassto �t random noise. The riher the funtion lass, the better it an �t or �explain� any givendata. A omplete de�nition and bounds may be found in Bousquet et al. [2004, Se. 5.2℄.Another viewpoint is taken by ompression and leads to the Minimum desription lengthpriniple. F is onsidered as a set of funtion tables (odebook) and the labels of a sampleas a string. The number of bits required to ode suh a string via a funtion in F , relativeto the string's length, is the ompression oe�ient [Vapnik, 2001, Se. 4.6.1℄. The enodinginludes the number of the funtion plus a orretion if there is no funtion in F thataurately odes the labels. Bounds on the risk or test error an be derived in terms of theompression oe�ient [see e.g. von Luxburg, 2001, Se. IV.1.2℄.What is di�erent in Clustering?The above introdution foused on lassi�ation as a learning problem. For lustering, someaspets are di�erent.Firstly, in lustering, no labels but only the mere data points are given for training.That means Q does not orrespond to the risk of mislassi�ation, if there an be suh athing for lustering at all. Instead, it measures the quality of the ut by other haraterististhat one might wish a good lustering to have, for example, that the onnetedness withinlusters should be large, but small aross groups. Some quality measures for lusteringwill be outlined in Setion 1.2.1. Qn then does not sum up some point-wise measure suhas errors, but may involve more omplex nonlinear terms. Thus, Qn does not obviouslyonverge to Q like a mean to its expetation, so the onentration inequalities may not bediretly appliable as for the 0-1-loss.The lak of given labels in the de�nition of Q for lassi�ation and lustering may leadto some di�erenes between onsisteny and stability of labelings for lustering, ontrary tolassi�ation. Algorithmi stability is often de�ned as a measure of how muh the outomeof an algorithm hanges if one sample point is replaed or removed from the training data.The hange may be de�ned either with respet to the expetation of a term involving thequality measure (suh as the quantities E [|L(fn(X), Y ) − L(fnew

n (X), Y )|] [Bousquet andElissee�, 2002℄ or E [|Qn(fn) − Qn−1(f
new
n )|2

] [Rakhlin et al., 2005℄ or |Q(fn) − Q(fnew
n )|[Bousquet and Elissee�, 2002℄) or with respet to the atual labelings fn(X) (for instane,

‖fn − fnew
n ‖∞ [Bousquet and Elissee�, 2002℄ or P{fn(X) 6= fnew

n (X)} [Kearns and Ron,1997℄). For lassi�ation, there is a lose relationship between those two viewpoints. If Rnis signi�antly smaller than 0.5, then the replaement or removal of one sample point will17



only lead to a similar quality if the new preditor fnew
n labels points almost exatly like

fn. A omplete relabeling will lead to a muh larger empirial error, beause most of thesample remains the same, and the labels for those points are �xed. For lustering, this isnot the ase. There might be an almost equally good grouping for whih a large numberof points is relabeled, so fn and fnew
n di�er signi�antly. Uniform stability, de�ned withrespet to the loss, is losely related to the onvergene of Qn(f) to Q(f) [e.g. Shölkopfand Smola, 2002, Thm. 12.3℄. For lustering, however, onsisteny and fast onvergeneof Qn(f) to Q(f) do not say anything about the stability measured on fn(X) diretly.

Figure 1.1.3: Symmetrilusters: At least two par-titions of this data set mayoptimize a lustering rite-rion: Cutting the set hor-izontally or vertially inthe middle. If labels aregiven (di�erent for x and o-points), then there is onlyone optimal labeling.

There may be several, very di�erent almost-minimizers of thequality funtion, and hopping from one to the other will nota�et the quality value signi�antly. This may happen if thereis symmetry in the data [Ben-David et al., 2006℄, as in Fig-ure 1.1.3. Ben-David et al. [2007℄ show that if there are mul-tiple optimal solutions, then the di�erene between two lus-terings returned by the k-means algorithm for di�erent inputsamples from the same distribution does not onverge to zeroas n → ∞. Rakhlin and Caponnetto [2006℄ study the num-ber of sample points that may be replaed in k-means for thesolution to remain stable: if there is a unique optimum for
Qn, then all points an be replaed, and otherwise Ω(

√
n).For the ERM priniple with supervised learning, Caponnettoand Rakhlin [2006℄ show that under ertain assumptions thediameter of the set of ε-minimizers of Qn with ε = o(1/

√
n)goes to zero as the sample grows, and hene it beomes lessand less likely that the algorithm will jump to a di�erent partof F , hanging the preditor signi�antly. Note however, thatthey only onsider the ase that sample points are added, andnot that the entire training sample is replaed. Referring to�supervised ERM�, they also ite Lee et al. [1996℄ that the ex-istene of di�erent minimizers of Q seems to be a property of di�ult learning problems.Note however, that onsisteny as we de�ned it above for lustering, implies, like inlassi�ation, that in the limit, we will get a �globally good� partition, as measured by

Q. �Over�tting� an happen in lustering as in lassi�ation. A simple example is thefollowing [Bubek and von Luxburg, 2007℄: Let X = [0, 1]∪ [2, 3], that means two �obvious�lusters [0, 1] and [2, 3], and the probability be the normalized Lebesgue measure on X(Figure 1.1.4(a)). The similarity funtion s : X ×X → [0, 1] indiates the similarity betweentwo points as follows:
s(Xi, Xj) =

{
1 if both Xi, Xj ∈ [0, 1] or both Xi, Xj ∈ [2, 3]

0 otherwise.A lustering f assigns the points Xi ∈ X to lusters C0 and C1. We measure luster qual-ity via the between-luster-similarity whih overs the similarities of points from di�erentlusters:
Q(f) =

∫

X∈C0

∫

Y ∈C1

s(X, Y )dP (Y )dP (X)

Qn(f) =
1

n(n − 1)

∑

Xi∈C0∩Zn

∑

Xj∈C1∩Zn

s(X, Y ).18
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(b) Sample points {X1, . . . , X10} from
X with over�tted fn (see text)Figure 1.1.4: Over�tting example for lusteringIn the estimator Qn, we only sum over sample points from the training sample Zn =

{X1, . . . , Xn}. As funtion spae F we allow any measurable partition. We may also addthe onstraint that the luster sizes should not be smaller than a �xed ε < 0.5. An optimizerof Q on X is
f∗(X) =

{
0 if X ∈ [0, 1]

1 if X ∈ [2, 3],with Q(f∗) = 0. De�ne another partition fn, illustrated in Figure 1.1.4(b):
fn(X) =





0 if X ∈ Zn ∩ [0, 1]

1 if X ∈ Zn ∩ [2, 3]

0 if X ∈ [0, 0.5] \ Zn

1 if X ∈ (0.5, 1] \ Zn or X ∈ [2, 3].It is straightforward to ompute that Qn(fn) = 0, so fn is a minimizer of Qn. However,
Q(fn) = 1/16 for any �nite n, so Q(fn) 9 Q(f∗). Therefore, for suh a rih funtion lass
F , we may get a globally bad lustering even with large training samples.1.1.3 SLT to remedy NP-hardnessThe two previous setions showed two di�erent approahes to lustering: ombinatorialoptimization and statistial learning theory. The former seeks to optimize Qn, an often NP-hard problem. From the perspetive of SLT, this is usually not the best thing to do, beauseit orresponds to allowing an exponentially large and rih F . Then, Q(fn) and Q(f∗) maydi�er greatly, so we over�t. In addition, the NP-hardness is usually remedied by heuristisand relaxations that often do not provide any theoretial guarantees on the solution. Instead,we may simplify the problem in the �avor of SLT by reduing the omplexity of F ormodifying the seletion of funtions by a omplexity riterion. In the following, we attempttwo suh approahes: (i) modifying Qn by the addition of a margin (Chapter 2), and (ii)restriting F to a polynomial size, suh that the searh through all andidate funtions isfeasible in polynomial time (Chapter 3). 19



1.2 Ingredients of lustering algorithmsIn the following, we outline some basi ingredients for ombinatorial lustering algorithms.One basi problem is the de�nition of a good lustering. To this end, a vast number oflustering quality funtions have been introdued. We desribe a small seletion of suhriteria in Subsetion 1.2.1. To apply a graph-based algorithm on data given in oordinates,we must �rst onstrut a graph that represents the similarity struture of the data. Sub-setion 1.2.2 summarizes several possibilities to onstrut similarity graphs from suh data.Subsetion 1.2.3 mentions some further questions.Before proeeding, let us review some notation. We are seeking K lusters C1, . . . , CK ⊆
V in a similarity graph G = (V, E) with nodes V and edges E that represents the n samplepoints. The funtion w desribes the edge weights: w(Xi, Xj) is the weight of edge (Xi, Xj),and w(Ci, Cj) is the sum of the weights of the edges onneting Ci and Cj . As usual in setnotation, Ci = V \ Ci is the omplement. All the notation is summarized again in theAppendix.1.2.1 Quality funtions for lusteringThere is no general objetive measure unifying all ideal properties of a lustering. Dependingon the data set and the spei� appliation at hand, riteria for a �good� or �reasonable�lustering may vary. In addition, oneptual and algorithmi issues ome into play. Someintuitive properties are enountered repeatedly in the de�nitions of lusters in a data set:DIS The similarity of points from di�erent lusters should be low. By the inverse relationof distane and similarity, lusters should be far apart. As edge weights representsimilarities, this means the sum of the edge weights between lusters should be low.CLO Points in the same luster should be similar or lose to eah other. This riterion anbe aptured by the sum of the similarities within the lusters.BAL Clusters should have at least a minimal size or should all have similar sizes (balaningriterion).In the light of probability distributions underlying the data, the above riteria mean thatbetween lusters, there should be a region of low probability density, whereas the densitywithin the lusters should be signi�antly bounded away from zero and, integrated over theregion of the luster, about equal for all lusters.Here, we assume to have K disjoint lusters Ci, V =

⋃̇K

i=1Ci.MinutThe Minimum Cut riterion aptures the dissimilarity riterion (DIS) of our list above viathe sum of between-luster similarities. It is the sum of the edge weights between lusters,that means the sum of the edges that are ut when the graph is partitioned into the lusters:
Mincut(C1, . . . , CK) =

k∑

i=1

w(Ci, Ci).Finding the minimum ut is a relatively easy ombinatorial problem, and there exist a num-ber of e�ient polynomial-time algorithms [see e.g. Stoer and Wagner, 1997, and referenes20



therein℄. It an e�iently be solved via its dual problem, the Maximum Flow problem [Pa-padimitriou and Steiglitz, 1982, Se. 6.1℄. A number of suh �ow algorithms are presentedin Ahuja et al. [1993, Ch. 7℄, among them one with a omplexity of O(n2
√
|E|).Limited to between-luster edges, the Minut riterion often favors to ut o� a singlenode. This tendeny, however, ontradits the balane riterion of luster sizes (BAL).Hene, a number of others riteria have been designed to remedy this lak.Bring in luster sizes: RatioCut and NutTwo riteria that ombine between-luster similarities (DIS) as well as the size of the lusters(BAL) are RatioCut and Normalized Cut (Nut). They sum up the ratio of the two riteriafor eah luster.RatioCut, �rst introdued by Hagen and Kahng [1992℄, measures luster size by thenumber of nodes in the luster:

RatioCut(C1, . . . , CK) =

K∑

i=1

w(Ci, Ci)

|Ci|
.Shi and Malik [2000℄ rafted an analogous riterion, Nut, where luster size is deter-mined by the volume, that is the aumulated degrees of the nodes in a luster:

Ncut(C1, . . . , CK) =

K∑

i=1

w(Ci, Ci)

vol(Ci)For both riteria, note that, under the onstraint that ∑i xi should be onstant, the sum∑K
i=1 1/xi is minimal if all xi equal. Thus, both riteria aim to balane luster sizes whilesimultaneously punishing to ut through densely onneted parts of the graph.The Nut objetive has an additional interpretation with respet to random walks ongraphs [Meila and Shi, 2001℄. It is the probability of transferring from one luster to theother: Ncut(C, C) = p(C|C)+p(C|C), where p(C|C) is the probability of jumping from a nodein luster C to one in C when starting in the stationary distribution. This means we favora partition in whih we remain longest in one luster by expetation.Despite their pratial appliability, there is a drawbak to the ratio riteria. The inlu-sion of the balane riterion renders them NP hard. Wagner and Wagner [1993℄ show thatan additional riterion on luster sizes (|Ci| ≥ f(|V |) for ertain funtions f) puts the utproblem in NP. Papadimitriou proved Nut to be NP-omplete [Shi and Malik, 2000℄.Nevertheless, the relaxed versions of the ratio riteria are solved e�iently by spetrallustering (see von Luxburg [2006℄ for details about spetral lustering). RatioCut leads tounnormalized spetral lustering, and Nut to the normalized version. Even though thesealgorithms are widely used in pratie, there is no general guarantee on the distane of theirsolution to the optimum. Several other relaxations exist [von Luxburg, 2006℄, but there isno e�ient approximate balaned graph ut with a goodness up to a onstant fator. Infat, the approximation problem itself is NP hard [Bui and Jones, 1992℄.The ratio riteria are losely related to graph-theoreti properties. Consider K = 2lusters C and C. Then Lovász [1993℄ de�nes the ondutane for an unweighted graph asthe Nut:

Φ = min
C

vol(G)
w(C, C)

vol(C) vol(C)
= min

C

((vol(C) + vol(C))w(C, C)

vol(C) vol(C)
.He summarizes results about relations to the eigengap of the graph Laplaian and an ap-proximation of Φ via multiommodity �ows, lose to a fator of O(log n). In the literature,21



the above de�nition is also known as the ondutane of the ut (C, C), whereas the ondu-tane of a graph is de�ned only as the larger of the two summands [Rubinfeld, 2006℄, as inBollobás [1998℄, Chung [1994℄, for example:
hG = min

C

|E(C, C)|
min(vol(C), vol(C))

,where E(C, C) is the set of edges between C and C, even for weighted graphs. Hene thenumerator di�ers from the Nut summand for weighted graphs. This ratio is also referredto as Cheeger onstant. It an be bounded by the seond smallest eigenvalue λ2 of thenormalized Laplaian, 2hG ≥ λ2 ≥ hG/2 [Chung, 1994℄. The orresponding eigenvetor isused for the partition in spetral lustering. The isoperimetri number [Chung, 1994℄ is theanalogue for RatioCut, related to the eigenvalues of the unnormalized Laplaian:
h′

G = min
C

|E(C, C)|
min(|C|, |C|) .Within-luster similarityThe minimization of the ut and maximization of luster volumes favored by Nut simulta-neously maximizes within-luster-similarities (CLO). This is easy to see by rewriting

∑

Xi,Xj∈C

w(Xi, Xj) =
∑

Xi∈C,Xj∈V

w(Xi, Xj)−
∑

Xi∈CXj∈C

w(Xi, Xj) = vol(C)−w(C, C). (1.2.1)There are, however, also diret riteria to optimize the similarities within lusters byminimizing distanes. The Within-sum-of-squares (WSS) sums the (Eulidean) distane ofthe points in a luster to the respetive luster enter, punishing the within-luster satter.
WSS(C1, . . . , CK) =

1

|V |

K∑

i=1

∑

Xj∈Ci

‖Xj − ci‖2,where ci = 1/|Cj|
∑

Xj∈Ci
Xj is the enter of luster Ci. The resulting partitions are Voronoitessellations around the enters. The standard algorithm to optimize WSS is the k-meansalgorithm [see e.g. Hastie et al., 2001, Se. 14.3.1℄. Analogous riteria replae the enters bymedians, suh as the objetive of the k-medians algorithm. Other distanes lead to lustersof di�erent shapes.Both the between- and within-luster similarities (BW) are integrated in ratios by theMinMaxCut riterion by Ding et al. [2001℄, onsidering riteria DIS and CLO:

BW(C1, . . . , CK) =
K∑

i=1

w(Ci, Ci)∑
Xs,Xt∈Ci

w(Xs, Xt)
.Its solutions resemble those of Nut, beause of the orrespondene expressed in Equa-tion (1.2.1).1.2.2 Similarity graphs: from oordinate data to graphsSome of the riteria above refer to lusters as results of a graph ut, and thus lead to graphut algorithms. Similarity graphs make suh algorithms appliable to oordinate data.22



For their onstrution from oordinate data, we assume to be given a similarity funtion
s : Rd × Rd → R+. One suh funtion is the Gaussian kernel:

s(Xi, Xj) = exp

(
−‖Xi − Xj‖2

2σ2

)
. (1.2.2)The data points make the nodes of the graph. We an onnet them in a number of ways[see e.g. von Luxburg, 2006℄. One possibility is the fully onneted graph, where the edgebetween Xi and Xj has weight s(Xi, Xj). For omputational and other reasons, a restritionto a subset of these edges makes sense. For an ε-neighborhood graph, a node only retainsthe edges to nodes at a distane of less than ε, usually with unit edge weight. For a k-nearestneighbor graph, we set edges from a node to its k nearest neighbors, usually with the edgeweight de�ned by s. In a mutual k-nearest neighbor graph, an edge (Xi, Xj) only exists if

Xi is among the k nearest neighbors of Xj and vie versa.The onstrution of any of these similarity graphs inludes parameters: the similarityfuntion and its parameters (suh as the width σ), the neighborhood range ε or the numberof neighbors k. The appropriate hoie of these parameters may greatly in�uene the resultand is another �eld of study.In the experiments in Chapters 2 and 3, we mostly use k-nearest neighbor graphs andthe Gaussian kernel as a similarity funtion.1.2.3 Other questionsImportant questions in lustering are the de�nition of a �good� lustering, the orrespondingquality riterion, its e�ient optimization, and theoretial guarantees of the algorithm.Furthermore, the hoie of the parameters for similarity graphs raises several questions. Inaddition, researh has been devoted to the question of how to properly evaluate a lusteringor lustering algorithm. Another important question is the number K of lusters we assumein the data. The hoie of K has been related to the eigengap of the graph Laplaian orstability, to name two riteria [f. referenes in von Luxburg, 2006℄. In the following, weassume that K has been �xed in advane.Apart from these hoies, algorithmi questions arise: what is a good and e�ient methodto minimize the objetive? Approahes range from onstrained optimization problems andtheir relaxations, greedy approahes, and exat ombinatorial methods suh as branh andbound, to name a few.
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Chapter 2First approah: MarginOne strategy to avoid over�tting is the introdution of a �penalty term� to make the al-gorithm prefer spei� types of funtions. Here, we favor funtions that are �robust� toperturbations in the training data: if the edge weights are perturbed by a limited amount,then the hosen partition will still be a good one. This approah is similar to the onept ofa margin for Support Vetor Mahines, seen from a robustness point of view. We will de�neseveral variations of margins on graphs and illustrate their behavior on toy examples: thealternatives behave roughly similar, but normalization an make a di�erene. In addition,the margin de�nes equivalene lasses of partitions.An inlusion of the margin in the objetive results in a mixed integer linear program.Motivated by the Max�ow-Minut duality, we will solve it via a network �ow approah.For simpliity, we fous on bipartitions (K = 2) in this hapter. We start with a shortintrodution to the onept of margins for linear lassi�ers in Setion 2.1, before we de�nesome margins for graph uts in Setion 2.2. Setion 2.3 introdues the resulting optimizationproblem and its dual. Some experiments are desribed in Setion 2.4, followed by a generaldisussion of the approah in Setion 2.5.2.1 Margins: what and whyThe onept of a margin is one interpretation of a regularizer or omplexity penalizer thatis inluded in the objetive, as suggested in Setion 1.1.2. Margins are most well-known inthe ontext of linear lassi�ers, leading to Support Vetor Mahines (SVMs). Hene, for anintrodution, we will �rst fous on margins of linear lassi�ers, in the ase when the data isseparable. An extension to the non-separable ase are soft margin hyperplanes, desribedin Shölkopf and Smola [2002, Se. 7.5℄.For a linear lassi�er, the geometrial margin is the distane of the separating hyperplaneto any sample point. Let the hyperplane be hw,b = {X ∈ X | 〈w, b〉+b = 0}. The geometrialmargin is then formally de�ned as [Shölkopf and Smola, 2002, Def. 7.2℄
ρ(w, b) = min

Xh∈hw,b,1≤i≤n
‖Xi − Xh‖ = min

i

Yi(〈w, Xi〉 + b)

‖w‖ .The large margin priniple suggests to hoose the hyperplane with the largest margin. Foranonial hyperplanes (mini |〈w, Xi〉 + b| = 1), the margin is ρ = 1/‖w‖. Thus, we seek tominimize the norm of w for regularization. This is the basis of SVMs.25



Figure 2.1.1: Finding the maxi-mum margin is equivalent to �nd-ing the losest points in the on-vex hulls of the lasses. (Figureadapted from [Bennett and Bre-densteiner, 2000℄)
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More general is the de�nition of a funtional margin of a preditor f , where we thresholdat zero [Cristianini and Shawe-Taylor, 2000, p. 159℄. The margin of one example (Xi, Yi) is
ρ(Xi) = Yif(Xi). If ρ(Xi) > 0, then the point is lassi�ed orretly. The margin of f is theminimal margin of the sample Zn:

ρ(f,Zn) = min
Xi∈Zn

ρ(Xi).For linear lassi�ers, this is equivalent to the geometrial margin but without normalizationby ‖w‖.The geometrial margin may also be seen from a dual viewpoint: �nding the maximummargin between two lasses A, B is equivalent to �nding the two losest points, where oneis in eah onvex hull of one lass (derived by Bennett and Bredensteiner [2000℄ from KKTriteria, Zhou et al. [2002℄ via a geometri approah). Figure 2.1.1 illustrates the equivalene.The separating hyperplane is orthogonal to the line onneting the two losest points from
A and B, it bisets this line in the middle.Alternatively, one an view the situation from the perspetive of supporting hyperplanes.Bennett and Bredensteiner [2000℄ show the equivalene for b = 0. Consider two parallel hy-perplanes, normal to w, that we move apart until they touh the sets A and B, respetively.That means it is 〈x, w〉 ≥ β for points in lass B and 〈x, w〉 ≤ α in lass A with pointsfrom eah lass ful�lling the ondition with equality. To �nd maximally distant suh hy-perplanes, we maximize the distane (β − α)/‖w‖ with respet to w, ending up with theSVM optimization problem. The best lassi�er will be the hyperplane exatly between thetwo supporting ones. An analogous interpretation exists for soft margin SVMs: try to �ndthe losest points in the redued onvex hulls of the lasses. The redued onvex hull onlyallows a fator smaller than µ for eah point in the linear ombination and orresponds tothe dual onept of enlarging the margin via slak variables [Bennett and Bredensteiner,2000, Zhou et al., 2002℄.But what is so desirable about large margins? Three main arguments are detailedin the following: First, the margin makes the lassi�er more robust to noise, and alsoompressible, seond, it follows �Oam's razor�, and third, it provides theoretial guaranteesfor generalization and may be interpreted as regularization.26
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Figure 2.1.2: Illustration of the ra-dius margin bound for SVMs. Thedata is enlosed in the sphere. Amargin of ρ1 allows three partitions,whereas with a larger margin of ρ2only one partition remains. (Figureadapted from [Shölkopf and Smola,2002, Fig. 5.4℄.)RobustnessIntuitively, a large margin lassi�er is one that is most robust to noise in the data. Imagine,for an SVM, that the sample points move about by a ertain amount. The lassi�er remainsorret on the training data as long as no point rosses the hyperplane. Hene, the separatorwith the largest distane to any point is the one providing most suh �freedom� to the data,de�ned as a movement of radius ρ, while still lassifying Zn orretly [Shölkopf and Smola,2002, p. 193℄.On the other hand, �x the data points but imagine the hyperplane to rotate by a ertainangle, possibly beause it was not oded with high auray. The larger the margin, themore it may move without a hange in the lassi�ation of the sample points. Hene, thelarger the margin, the lower the auray needed to enode the diretion w. In this regard,a large margin orresponds to better ompression [von Luxburg, 2001, Se. IV.2.1℄.SimpliityFurthermore, the lassi�er with the largest margin orresponds to the simplest one, satisfyingOam's razor [von Luxburg, 2001, Se. III.3℄. The Franisan friar William of Okhamstated the �lex parsimoniae� (law of parsimony/suintness): if many theories are available,hoose the one with the fewest assumptions. The latter is often interpreted as �the simplest�.The explanation of any phenomenon should make as few assumptions as possible, thuseliminate those explanations that do not make any di�erene in the observable preditionof the hypothesis or theory and only keep the simplest [wikipedia℄.Generalization boundsThe theoretially most interesting aspet is the derivation of generalization bounds basedon the margin. Aiming for a large margin orresponds to favoring a less omplex preditorthat is less prone to over�tting. For detailed reading, refer to Cristianini and Shawe-Taylor[2000, Se. 4.3℄, Vapnik [2001, Se. 10.3℄, and Bartlett and Shawe-Taylor [1998℄.First, the VC dimension (f. Setion 1.1.2) an be bounded with respet to the marginand the radius R̃ of a sphere entered at the origin that enloses the data. Let F be theset of linear lassi�ers of the form f(x) = sgn(〈w, x〉) with ‖w‖ ≤ 1. The subset Fρ ⊆ Fis the subset of suh lassi�ers with a margin of at least ρ on the given training sample
Zn, that means Yif(Xi) ≥ ρ for all (Xi, Yi) ∈ Zn. Then Fρ has a VC dimension of atmost min{R̃2/ρ2, n} + 1 [Bartlett and Shawe-Taylor, 1998℄. In other terms, the larger themargin with respet to the spread of the data, the less partitions are possible. Figure 2.1.2illustrates the relation of margin, radius and number of partitions. The �gure also illustratesanother result about margins: The margin over all dihotomies of k ≤ d + 1 points in Rdis maximized when the points form a regular simplex on the sphere [Hush and Shovel,27



2001℄. The fat-shattering dimension an be bounded analogously to the VC dimension:
fatFρ

(ρ) ≤ R̃2/ρ2 [Cristianini and Shawe-Taylor, 2000, Thm. 4.16℄. Note that the margin isa data-dependent measure of omplexity. Hene, it may lead to a data-dependent Struturalrisk minimization, using a struture of funtion lasses Fρ aording to the margin [Bartlettand Shawe-Taylor, 1998℄.The omplexity bounds with respet to the margin imply generalization bounds involving
ρ and R̃. In the separable ase with a linear lassi�er (R̂(f) = 0), for instane, R(f) grows as
O
(

eR2

nρ2

) [Cristianini et al., 1999, iting [Vapnik, 2001℄℄. If there is noise, the bound may alsobe stated in terms of the k-th smallest (point-wise) margin, that means we ignore the k − 1points with smaller margin as outliers. This relaxation worsens the bound by a square rootand an additional summand k/n [Cristianini and Shawe-Taylor, 2000, Thm. 4.19℄,[Bartlettand Shawe-Taylor, 1998℄.The margin also provides an estimation of how benign the data distribution is. If thedata is away from the hyperplane, then fewer examples are needed to estimate the separatorto a given auray. Benign distributions result with high probability in a small margin[Bartlett and Shawe-Taylor, 1998℄.RegularizationRelated to the bounds, the margin term in the optimization riterion may be seen as aregularizer to penalize omplexity. The riterion for soft margin SVMs with kernels is thenthe sum of an error term and the regularizer ‖w‖2. For many kernels, this regularizermeasures the smoothness of the funtion, so smoother (�simpler�) funtions are preferred[von Luxburg, 2001, Se. III.3℄.Some further views of marginsOne interpretation of the margin is that it desribes how muh the data may be perturbedbefore another preditor or solution is better than the urrent one. This view draws onne-tions to the notion of stability. Bilu and Linial [2004℄ study the NP-hard Maxut problemand pose the question whether �stable� instanes of a problem are easier to solve. Theyde�ne the stability of an optimal solution by the amount that the edges in the graph maybe saled before another solution is equally good. In that respet, the measure is similar tothe margin onept outlined above. Stability here is de�ned for an instane of the problem(i.e. the graph) and not an algorithm. For instanes with a ertain stability, the Maxutproblem an be solved in polynomial time. Hene, stability simpli�es the optimization.Our hope is to �nd a margin riterion that has the same potential. However, the authorsdistinguish between loal and global stability. The former onsiders any other solution tobeome better, whereas the latter only looks at the possible saling of urrently ut edges atone node, and its potential swap to the other luster. Loal stability does not imply globalstability and is thus no basis for their polynomial algorithm. Their onept of distintnessalso reminds of a margin: a maximal ut is ρ-distint if the relative loss of moving anysubset of points aross the ut is greater than ρ, so there is no solution with a quality withinthe relative range of ρ. Note, however, that all these onepts are merely based on disreteoptimization on given samples without any relations to SLT or underlying distributions.Similar ideas to the ones we follow below are suggested by Pelkmans et al. [2007℄, butwith regard to transdutive graph uts. They regularize with an average margin, whihorresponds to the Minut. The dual of the relaxed version of the resulting optimizationproblem may be interpreted as a �ow problem, similar to our approah.28



The large margin priniple for SVMs has also been diretly extended to lustering. Forlustering, this means to �nd a hyperplane that separates the points, but without givenlabels, so the labels are variables as well. Rahimi and Reht [2004℄ show that the spetralrelaxation of Nut orresponds to a projetion of the points into a high dimensional spaeand the searh for a hyperplane in this spae with maximum average margin, with an addi-tional balane onstraint. The margin is a weighted average of the distanes of the pointsto the plane. The equivalent of the SVM margin, the minimum distane to any point, issuggested but not e�iently solved. Xu et al. [2004℄ revert to a soft margin to solve themax min margin problem as a semide�nite program. The addition of an o�set b for thehyperplane is realized by Valizadegan and Jin [2006℄.The onept of a large margin lassi�er has been extended to metri spaes by vonLuxburg [2001, Ch. III℄ and Hein et al. [2005℄, using Banah spaes, and Lipshitz fun-tions as deision funtions. The Lipshitz onstant is used for regularization. Der and Lee[2007℄ propose a framework for large margin lassi�ation in Banah spaes with semi-innerproduts. In the following, we attempt to apply the margin onept to lustering, based onthe viewpoint of robustness or perturbation of the data points.2.2 In searh of a margin for graph utsFor ompatibility with graph ut algorithms, we seek to de�ne a margin for lustering interms of graphs. Unlike the extensions mentioned above, we annot rely on an obvious dotprodut or line separator.The main idea of a margin as above is that it measures the distane of a point from the�deision boundary�. The latter is though not well-de�ned for lustering. Hene, we revertto the viewpoint of robustness against perturbations and de�ne the margin as the maximumpossible perturbation before a point is better assigned to another luster. The viewpointof perturbations motivates a variety of de�nitions of a ut margin. On the one hand, theydepend on the ut riterion. On the other hand, the type of perturbation omes into play.No matter if the perturbation is viewed as nodes moving or being resampled, or as a diretmodi�ation of the edge weights, what eventually a�ets the ut value is the hange of edgeweights within and aross luster limits. So in general, we de�ne the margin of a single nodeas a measure of how muh its edge weights need to be perturbed before it will be better toassign it to another luster.Formally, we onsider a perturbation as an additive hange of ε in the weight of a within-luster or ross edge. We �rst de�ne the margin ρ(v) for one node v ∈ V , and then set theglobal margin to the minimum margin of all nodes in the graph. Denote the two lustersof a given partition f by A and B, and let v ∈ A. Let fA be the partition equal to f thatassigns v to A, and fB the partition where v is moved to B. The remaining assignmentsremain unhanged. Let wε be the edge weights after a hange of ε. For the margin, wedetermine how large ε needs to be suh that fB has a lower ut value than fA.We �rst state a normalized margin for Minut. For ompleteness, a similar riterionis given for Nut. Sine the latter leads to a quadrati equation, we fous on the Minutriterion in the rest of the hapter.A further variation of the margin onept is a soft margin, where some nodes are allowedto have a margin smaller than ρ. This approah ould be interpreted as putting the ignorednodes in the �bakground�. The soft margin is not onsidered further in this report.29



Figure 2.2.1: Margin for a lique (eah nodeonneted with unit weight to eah othernode). The partitions are between lusters C1and C2 of size αn and (1 − α)n. Left: Valueof f(α) − λminv∈V ρ(v), where f(α) is theut value for a partition with relative lustersizes α and 1 − α. The di�erent lines or-respond to di�erent relative margin weights
λ/(n − 1). The margin moves the optimumfrom one empty luster (α = 0) to balanedlusters (α = 0.5). Right: value of the marginterm −λminv∈V ρ(v). The x axis orrespondsto the values of α. 0 0.5 1
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2.2.1 MinutThe Minut riterion merely adds the ross-luster edges, so any perturbation of within-luster edges annot a�et the ut value. The ontribution of v to Mincut(w, fA) are theweights of its adjaent edges to B, w(v,B). fB is better than fA if v is more attahed to Bthan to A, so w(v,B) > w(v,A). To obtain a number between -1 and 1, we normalize bythe degree of v:
ρ(v) =

w(v,A) − w(v,B)

w(v, V )
= 1 − 2

w(v,B)

w(v, V )
∈ [−1, 1]. (2.2.1)The Minut margin is a measure how relatively strongly a node is attahed to its luster.Negative values indiate that it is better to move v to B. If v is exatly in between A and

B, the margin will be zero.DisussionThis margin will favor partitions that only ut a small fration of the edge weights adjaentto eah node. It ignores, however, the absolute ontribution of a partiular node to the utvalue. This ignorane may lead to problems if the node degrees are broadly distributed. Onthe other hand, absolute values are onsidered by the Minut riterion itself, so a ombina-tion of both riteria might remedy this problem. In part, the question about ontributionsleads to the question if all nodes are equally important, or if a node's importane dependson its degree.For some graphs, the Minut margin inludes a balaning riterion via balaning theedge weights. Consider a lique. Then the partition with the largest margin will be any onewhere |A| = |B|, with ρ(v) = 0 for eah node. Figure 2.2.1 shows how the margin in�uenesthe optimal partition for a lique.Related to the balaning, the margin will disfavor partitions where one luster onsistsof one node only, beause the margin for this node will reah its minimum of -1.Matrix notationIn terms of matries, the above margin is
ρ(V ) = (D−1W (iA − iB)) ⊙ (iA − iB) = diag(iA − iB)D−1W (iA − iB),30



or, based on the seond term in (2.2.1),
ρ(V ) = 1 − 2

(
(D−1W (−iB)) ⊙ iA + (D−1W (−iA)) ⊙ iB

)
,where iA and iB are the indiator vetors for A and B, respetively, and ⊙ is the entry-wiseprodut. The matrix equations yield a vetor whose entries are the margins for all nodes.Here, D is a diagonal matrix where D(j, j) is the degree of node vj and W is the weightmatrix with W (i, j) = w(vi, vj).Relation to other riteriaThe idea of looking at relative edge weights within versus between lusters is also inherentin other ut riteria. As an example, the modularity approah by Newman [2006℄ onsidersentire lusters and squares the quantities. Let p(u, v) = w(u, V )w(v, V )/w(V, V ), then themodularity is

Mod(f) =
1

w(V, V )

∑

u,v∈V

[w(u, v) − p(u, v)]δ(f(u), f(v))

=
2(w(A,A)w(B,B) − w(A,B)2)

w(V, V )2
.Furthermore, the normalized Minut margin is similar to the idea of the relative netontribution ρf (T ) of a group T of nodes to the ut, and ρ-distintness, both de�ned inBilu and Linial [2004℄. Their relative ontribution to Maxut for a single node (T = {v},

v ∈ A) boils down to
ρf (T ) =

w(v,B) − w(v,A)

min{w(v,A), w(v,B)} .Note that the authors onsider Maxut, hene the di�erene is reversed. The normalizationis not by degree but by the smaller fration of edges to a luster. The great di�erenein onept is that not only single nodes are onsidered, but T an be any subgroup of
V . Hene, distintness is a global measure. A ut is ρ-distint if the ontribution of allpossible subgroups is at least ρ. The onsideration of all 2n subgroups, however, makes thedistintness expensive to ompute.Multipliative perturbationAlternatively, the perturbation of edge weights ould be multipliative, as is disussed byBilu and Linial [2004℄. For εw(v,B) to be larger than w(v,A), it must be ε > w(v,A)/w(v,B).If ε < 1, then fB is better than fA already.The multipliative perturbation is equal to the riterion of loal stability in Bilu andLinial [2004℄. A ut is γ-loally stable in their sense if γ = 1/ρ for the multipliative Minutmargin.2.2.2 NutWithout any perturbation, the Normalized Cut value for fA and fB is

Ncut(w, fA) =
w(A,B)w(V, V )

w(A, V )w(B, V )

Ncut(w, fB) =
(w(A,B) − w(v,B) + w(v,A))w(V, V )

(w(A, V ) − w(v, V ))(w(B, V ) + w(v, V ))31



As the edge weights within and between lusters are summed up, respetively, it is enoughto onsider two ases: �rst, adding εw to any edge within A and, seond, εb to any edgebetween A and B.Changing the within-luster edges by εw gives
Ncut(wεw , fA) =

w(A,B)(w(V, V ) + 2εw)

(w(A, V ) + 2εw)w(B, V )

Ncut(wεw , fB) =
(w(A,B) − w(v,B) + w(v,A) + εw)(w(V, V ) + 2εw)

(w(A, V ) − w(v, V ) + εw)(w(B, V ) + w(v, V ) + εw)
.Setting Ncut(wεw , fA) = Ncut(wεw , fB) yields a polynomial a(εw)2 + bεw + c = 0 with

a = −w(A,B) + 2w(B, V )

b = −w(A,B)(w(A, V ) + w(B, V ))

+ w(B, V )(2(w(A,B) − w(v,B) + w(v,A)) + w(A, V ))

c = −w(A,B)(w(A, V ) − w(v, V ))(w(B, V ) + w(v, V ))

+ w(B, V )w(A, V )(w(A, B) + w(v,A) − w(v,B)).Analogously, the addition of εb to a ross edge leads to
Ncut(wεb , fA) =

(w(A,B) + εb)(w(V, V ) + 2εb)

(w(A, V ) + εb)(w(B, V ) + εb)

Ncut(wεb , fB) =
(w(A,B) − w(v,B) + w(v,A))(w(V, V ) + 2εb)

(w(A, V ) − w(v, V ))(w(B, V ) + w(v, V ) + 2εb)and a quadrati polynomial with
a = −2(w(A, V ) − w(v, V )) + (w(A,B) + w(v,A) − w(v,B))

b = −(w(A, V ) − w(v, V ))(w(B, V ) + w(v, V ) + 2w(A,B))

+ (w(A,B) + w(v,A) − w(v,B))(w(A, V ) + w(B, V ))

c = −(w(A, V ) − w(v, V ))w(A,B)(w(B, V ) + w(v, V ))

+ (w(A,B) + w(v,A) − w(v,B))w(A, V )w(B, V ).For the margin of v, set ρ(v) = min{−εw, εb} and the margin of f to ρ(f) = minv∈V ρ(v).Alternatively, one might onsider a setting where ε is added to the within-edges and −εto the ross edges. This setting, however, is even more ompliated, resulting in a third-orderpolynomial.2.2.3 Illustration of the marginsIn the following, we investigate the behavior of some margins on toy graphs. First, severalmargins are ompared with respet to their �ritial node�, and seond, the best uts fortwo margins illustrated. In the end, we look at the e�et of adding edges to a grid graph.In the �rst experiment, we omputed di�erent margins of all possible uts of a toy graph.Figure 2.2.2 shows a seletion of those uts, where the luster assignments are indiated bynode olor, blue or magenta. The node with the smallest margin is marked in red, one withthe largest margin in green. The illustrated margins are:
ρ1 Additive Nut margin as de�ned in Setion 2.2.2.32
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Figure 2.2.2: Illustration of the di�erent margins. One row orresponds to one ut, olumnsto the di�erent margins. The node with the lowest margin is marked in red, one with thelargest margin in green. Margins with odd number have round markers, the others squaremarkers. 33



Figure 2.2.3: The six moststable uts are similar forthe additive (ρ5) and mul-tipliative (ρ6) Minut mar-gins. The node that deter-mines the margin is markedin red.
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ρ2 The same as ρ1, but normalized by the degree of the node, that means divided by w(v, V ).
ρ3 Nut margin where ε is added to a within edge and simultaneously subtrated from aross edge. The omputation is then analogous to ρ1.
ρ4 The same as ρ3, but normalized by the degree of the node.
ρ5 Additive normalized Minut margin as in Equation (2.2.1).
ρ6 Multipliative Minut margin as desribed in Setion 2.2.1.In general for this graph, the ritial node determining the margin is the same for thedi�erent margin variations. It an vary though, as for instane in row four.If one node is ut o�, like in row 5, then its margin is the minimum possible for allvariations. For ut 2, all margins reah their peak and, equally, ut 5 ahieves the lowestvalue for eah margin. In between those two, there are di�erenes in the order, even betweena margin and its normalized form. Hene the normalization does in�uene the margin value.Note also that the lowest ut value (row 4) does not orrespond to the one with the largestmargin.The node with the lowest margin is the same for the normalized and unnormalizedversions of the margin in all examples (red markers, square and irle oinide). The pointwith the largest margin, however, di�ers in one example for the additive Nut margin ρ3with simultaneous addition and subtration. In other graphs (not shown here) the nodewith the lowest margin varied as well, also for ρ1 and ρ2. This divergene points to the fatthat normalization by node degree an make a di�erene, not only with regard to the hoieof the partition, but also with regard to whih node is ritial.34



nodes in luster A (i) (ii) (iii)ut ρ5 ρ6 ut ρ5 ρ6 ut ρ5 ρ6vertial ut1, 5, 9, 13 4.0 0.00 1.00 4.0 0.27 1.75 8.0 -0.07 0.881, 5, 9, 13, 2, 6, 10, 14 3.0 0.46 2.67 3.0 0.57 3.67 7.0 0.47 2.75
1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 4.0 0.00 1.00 4.0 0.27 1.75 8.0 -0.07 0.88diagonal ut4 2.0 -1.0 0.00 3.0 -1.00 0.00 4.0 -1.00 0.003, 4, 8 3.5 -0.27 0.57 5.5 -0.47 0.36 7.5 -0.47 0.362, 3, 4, 7, 8, 12 5.5 -0.46 0.38 8.5 -0.60 0.25 11.5 -0.60 0.25diagonal luster � one �row�1, 6, 11, 16 11.0 -1.00 0.00 13.0 -1.00 0.00 15.0 -1.00 0.005, 10, 15 9.0 -1.00 0.00 10.0 -1.00 0.00 11.0 -1.00 0.009, 14 5.5 -1.00 0.00 6.5 -1.00 0.00 7.5 -1.00 0.00diagonal luster � two �rows�1, 5, 6, 10, 11, 15, 16 9.0 -0.46 0.38 12.0 -0.46 0.38 15.0 -0.50 0.335, 9, 10, 14, 15 7.5 -1.00 0.00 9.5 -0.60 0.25 11.5 -0.60 0.25�around the orner�1 2.0 -1.00 0.00 3.0 -1.00 0.00 4.0 -1.00 0.001, 2, 5, 6 3.0 0.14 1.33 5.0 0.07 1.14 7.0 0.000 1.001, 2, 3, 5, 6, 7, 9, 10, 11 6.0 -0.14 0.75 9.0 -0.33 0.50 12.0 -0.14 0.75Table 2.1: Cut and margin values for the gridFigure 2.2.3 displays the six uts with the largest margin for the normalized additive(ρ5) and multipliative Minut margin ρ6. As above, the �ritial� node determining themargin is marked by a red irle. As we often observed with the toy examples, the best utsand ritial nodes oinide for both margins. The large margin uts orrespond to what onevisually onsiders as lusters.The �gure shows that several uts an have the same margin. Apart from the assign-ment of the ritial node and its neighbors, the partition an vary as long as no othernode gets a lower margin. Hene, the margin values de�ne equivalene lasses of parti-tions with the same margin. The lower the de�ning limit margin, the larger the lass anbe (and the higher the risk of potential over�tting). Within one suh lass, the parti-tion with the lowest ut value is preferable, that is the one minimizing the empirial risk.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 2.2.4: Grid graph
These ideas remind of the onept of Strutural RiskMinimization (f. Setion 1.1.2). Whih suh equiva-lene lass is hosen in the end depends on the relativeweighting of ut value and margin.Note that the equivalene lasses di�er in the as-signment of densely onneted sub-lusters whose di-vision results in a margin lower than the one de�ningthe lass. Thus, the di�erene of the partitions withinone lass may hint to the atual number of lusters,and to densely onneted (sub-)ommunities withinlarger lusters.For the behavior on one speial graph, onsidera grid as in Figure 2.2.4. The dashed edges have a35



weight of 0.75, the blak edges weigh 1.0. Variations are (ii) the addition of blak edges
(1, 13), (2, 14), (3, 15), (4, 16), and (iii) the additional addition of edges (1, 4), (5, 8), (9, 12),
(13, 16). Table 2.1 displays the ut and margin values for several possible partitions. Intu-itively, the squares of four nodes in eah orner eah form a luster, so one would partitionsuh that only dashed edges are ut.Three observations ath the eye: First, two uts an have the same ut value, butdi�erent margins. A vertial ut through the middle or around one square for (i), forinstane, have the best ut values, but the vertial partition wins by the margin. Seond,in the end, for all grids, the balaned vertial partition is the best by the margin. Thisorresponds to the intuition, beause the added edges strongly onnet the squares, reatingtwo groups for (ii). In (iii), all squares are onneted equally to eah other. For suh regularlyonneted graphs, the margin indues a balaning of luster sizes to redue the number ofonnetions of a single node to the other luster (see also Subsetion 2.2.1). Third, theexample shows that margin values an inrease and derease with the addition of edges.2.3 Optimization problemLet us now modify Qn by a margin riterion and solve the resulting optimization problem.In the following, we fous on the additive Minut margin ρ5. The riterion of the absoluteut value, whih is the objetive of the original Minut problem, is extended by the margin,weighted by a fator λ. Thus, the goal is to minimize

min
f

Cut(f) − λρ(f) ≡ min
f

MCM(f) (2.3.1)for the given graph, subjet to ertain onditions given, for example, by the edge weights.We will solve this problem as a Network Flow, based on the Minut�Max�ow duality [Eliaset al., 1956, Ford and Fulkerson, 1956℄.The equations are stated in terms of vetors and matries. Let the given graph G =
(V, E) have n nodes and m edges. The partition f is an indiator vetor in {0, 1}n for thelusters C0 and C1. Let A ∈ {−1, 0, 1}n×m be the node�edge adjaeny matrix and w ∈ Rm

+the weight vetor. The matrix A has a olumn for eah edge ej = (vi, vk), with entries
A(i, j) = −1 and A(k, j) = 1.The following outline is based on Papadimitriou and Steiglitz [1982℄.2.3.1 The Max�ow Problem and its dualIn the Maximum Flow problem, the graph may be viewed as an eletrial iruit, a systemof water pipes or roads on whih goods are transported. The goal is to assign �ow valuesto the edges suh that the total �ow from a distinguished node s, the soure, to the node
t, the sink, is maximized. The �ow in an edge may not exeed the apaity given by theedge weight (apaity onstraint), and the total in�ow to a node must equal the �ow outof the node (�ow onservation), exept for the soure and sink. In addition, �ow annot benegative.In matrix notation, we seek to �nd a �ow assignment h ∈ Rm suh that the �ow v from
s to t is maximized: 36



max
h,v

v (2.3.2)s.t. Ah + cv = 0 (�ow onservation)
h ≤ w (apaity onstraint)
h ≥ 0.The variable c indiates soure and sink:

c(i) =





−1 for i = s

1 for i = t

0 otherwise.It helps to apture the �ow from s and into t.The dual of problem (2.3.2) is known as the Minimum Cut problem:
min
γ,f

γ⊤w (2.3.3)s.t. A⊤f + γ ≥ 0 (let γ mark ross edges)
c⊤f ≥ 1 (separate s and t)

γ ≥ 0.The seond onstraint, −f(s) + f(t) ≥ 1, fores f(s) = 0 and f(t) = 1, so soure and sinkare assigned to di�erent groups or lusters. The �rst onstraint demands for eah edge (i, j)that f(i) − f(j) + γ(i, j) ≥ 0: if f(i) = 0 and f(j) = 1, then γ(i, j) must be at least one,otherwise it an be zero. Looking at the objetive, γ should be as small as possible. Hene,
γ(i, j) = 1 for all edges from nodes in luster with label zero to nodes in the luster labeledone, and otherwise γ = 01. As a result, the objetive sums the weight of all suh ross edgesbetween the lusters. Diretion does play a role here, but for an undireted graph simplyreplae undireted edges {i, j} by edges in both diretions, (i, j) and (j, i).For the Max�ow problem, there exist e�ient polynomial-time �ow algorithms. Via thedual, these algorithms also serve to e�iently �nd the minimum ut.2.3.2 Extension to the marginNow we add the margin onstraint to the Minut problem, and derive its new dual to endup with a �ow problem whih is potentially easier to solve, by modi�ations of existingalgorithms.Reall that the margin for node i in luster C0 is

ρ(i) =
w(i, C0) − w(i, C0)

d(i)
,where d(i) = w(i, V ) is the degree. The margin for the partition is ρ(f) = mini∈V ρ(i).1Pratial note: Without integer onstraints, Matlab's linprog returned non-integer results for f and γif there were multiple minimal uts. The objetive value may still be orret, though, sine the output maybe a linear ombination of the two optimal solutions.37



Extended MinutThe extended Minut inludes the weighted margin ρ ∈ [−1, 1], with a fator λ ∈ R:
min
γ,f,ρ

γ⊤w−λρ ≡ min
γ,f,ρ

MCM(f) (2.3.4)s.t. A⊤f + γ ≥ 0 (let γ mark ross edges)
c⊤f ≥ 1 (separate s and t)

γ ≥ 0

1n − 2W̃ (I)γ ≥ ρ1n (margin onstraint 1)
1n − 2W̃ (O)γ ≥ ρ1n (margin onstraint 2)Here, 1n denotes the n× 1 vetor of all ones. The matries W̃ ∈ Rn×m

+ give the normalizededge apaities: outgoing: W̃
(O)
i,(j,k) =

{
w(i,k)
d(i) if j = i

0 otherwise.inoming: W̃
(I)
i,(j,k) =

{
w(j,i)
d(i) if k = i

0 otherwise.If γ(i, j) indiates the edges from nodes labeled 0 to nodes labeled 1, that means luster C0to C1, then the last pair of onstraints enodes the margin riterion. Consider i ∈ C0, then
1 − 2

∑

j:(i,j)∈E

γ(i, j)W̃ (O)(i, (i, j)) = 1 − 2
∑

j:(i,j)∈E∩(C0×C1)

γ((i, j))w(i, j)/d(i)

=
(w(i, C0) + w(i, C1)) − 2w(i, C1)

d(i)

=
w(i, C0) − w(i, C1)

d(i)desribes the margin for node i. For i ∈ C1, however, the sum above will be one, beause γis zero for edges out of C1. The other onstraint takes are of nodes in C1:
1 − 2

∑

j:(i,j)∈E

γ(i, j)W̃ (I)(j, (i, j)) = 1 − 2
∑

j:(j,i)∈E∩(C0×C1)

γ((j, i))w(j, i)/d(i)

=
(w(i, C0) + w(i, C1)) − 2w(C0, i)

d(i)

=
−w(i, C0) + w(i, C1)

d(i)
, (2.3.5)if i ∈ C1. As above, a vertex i ∈ C0 does not have any inoming edges (j, i) with γ(j, i) = 1,so the term (2.3.5) will be one for that node, the maximum possible margin.38



Dual: Flow problemTo derive the dual (as outlined in Boyd and Vandenberghe [2004, Ch. 5℄), we start with theLagrangian of Problem (2.3.4):
L(f, γ, ρ, v, h, g1, g2, p) = w⊤γ − λρ + h⊤(−A⊤f − γ) + v(1 − c⊤f) − p⊤γ (2.3.6)

+ g⊤1 (ρ1n + 2(W̃ (O))⊤γ − 1n) + g⊤2 (ρ1n + 2(W̃ (I))⊤γ − 1n)

= (w − h − p + 2W̃ (O)g1 + 2W̃ (I)g2)
⊤γ + (−Ah − vc)⊤f

+ (λ + 1⊤
n (g1 + g2))ρ + v − 1⊤

n (g1 + g2)

v, h, g1, g2, p ≥ 0.The orresponding dual is
max

v,g1,g2,h
v − 1⊤n (g1 + g2) ≡ max

v,g1,g2,h
v (2.3.7)s. t. h ≤ w + 2((W̃ (O))⊤g1 + (W̃ (I))⊤g2)

Ah + vc = 0

1⊤n (g1 + g2) = λ

h ≥ 0

v ≥ 0

g1, g2 ≥ 0.If the third onstraint holds, then the objetive beomes v−λ, the same as in the originalMax�ow problem (2.3.2), beause λ is a onstant. Analogous to (2.3.2), the above dual maybe interpreted as a �ow problem. Again, h(i, j) is the �ow in edge (i, j), and v the total�ow from s to t. The additional variables g1 and g2 are �slak� variables allowing the �owto exeed the apaity on ertain edges (�rst onstraint). The total slak is limited by λ viathe third onstraint.Hene, the extended �ow problem reads as follows. Maximize the �ow from soure tosink, respeting �ow onservation and edge apaities. The apaities may be exeeded bya total of λ. The gain in apaity for the investment g1 (for outgoing edges) or g2 (forinoming edges) depends on the relative weight of the edge with regard to the degree of itsadjaent nodes. The �rst onstraint states this dependene for eah edge (i, j):
h(i, j) ≤ w(i, j) + 2

(
w(i, j)

d(i)
g1(i) +

w(i, j)

d(j)
g2(j)

)
. (2.3.8)To maximize the apaity gain, it is best to inrease the g on the adjaent node where theedge has higher relative weight, so it makes a larger part of the node's onnetions. Onthe other hand, the g values may mark an interation of edges: Inreasing g1 on a nodewith many outgoing full edges will inrease the �ow bound on many suh edges and henebe very e�etive (we get a lot for �paying� one unit), and equally for g2 and nodes withmany inoming full edges. For the original Max�ow problem, the full edges are the onesthat determine the maximum �ow. In the dual, all ut edges are full edges, de�ning theminimum ut. Thus, the g variables may be indiators for the luster borders. Nodes inbetween the lusters with lower margin and strong onnetions to the other luster mayhave larger g values. Then g is an indiator of problemati or �di�ult� nodes.39



2.3.3 DisussionWhat is the gain of a duality formulation as (2.3.4) and (2.3.6)?If the dual is easy to solve, then the primal is, too, beause the primal variables maybe obtainable via omplementary slakness and KKT onditions [Boyd and Vandenberghe,2004, Se. 5.5℄.With binary γ, the extended �ow problem may be solvable in polynomial time via amodi�ed �ow algorithm. A variety and detailed analysis of suh algorithms is given inAhuja et al. [1993℄. Possibly, one ould solve the Max�ow problem �rst, for example witha Pre�ow-Push algorithm, and then investigate where apaity extensions would be mostuseful. Maybe even a variation of the Network Simplex algorithm may work. On the otherhand, the solution of the Minut and Minut with margin an be very di�erent: Minutoften uts o� one node, whereas the margin prevents suh behavior. Therefore the Max�owsolution may not be a good starting point for the algorithm. Another problem an arisefrom g not being integer. Sometimes saling tehniques are applied for polynomial timealgorithms. A real value of g may be di�ult to �nd with saling algorithms, leading to agreat number of iterations.The total unimodularity of adjaeny matries [Cook et al., 1997, Ch. 6.5℄ an give nieproperties to network problems using them as onstraint matries [Ahuja et al., 1993℄, suhas in the original network problems. In the modi�ed problems, the additional onstraintmatries W̃ (O) and W̃ (I) are not unimodular any more. In fat, we annot guarantee thatthe optimal solution of the modi�ed problem is integer. This problem atually shows up inexperiments and brings up the problem of how to de�ne the partition that is the solution ifthe labels f and γ are non-integer. One solution is to expliitly put integer onstraints onthe labels. Note that these integer onstraints make the problem NP-hard.Other problems are easier to takle. Note that the optimization problem requires dis-tinguished, pre-separated nodes s, t. The original lustering problem does not inlude suhnodes, hene di�erent assignments of s and t should be tried. However, there is only apolynomial number of suh pairs, namely n(n − 1), so even trying all pairs an be done inpolynomial time, if the optimization problem an be solved in polynomial time.So far, the approah only works for bipartitions. To extend it to more lusters, one mayreursively reapply the algorithm to the identi�ed lusters. The reursion will, however,probably ome with a loss in auray: there is, for example, no guarantee that the optimalbipartition of three lusters will be one luster on one side and two on the other instead ofone or more lusters being ut.2.3.4 Implementation: an odyssey of its ownFor experimental investigation, the modi�ed optimization problems (2.3.4) and (2.3.6) weresolved as linear programs (LP) and mixed integer linear programs (MILP) using the CPLEXsolver [plex℄.Due to the lak of a Matlab interfae, we reated graphs in Matlab and automatiallygenerated the orresponding �les in MPS format, for both the Max�ow and Minut prob-lems, along with orresponding �les ontaining the CPLEX ommands. Via a shell sript,CPLEX was alled with these ommands. A pearl sript helped to read out the CPLEXLog and �lter it for the results, writing them out in a Matlab-readable format.Not further mentioned will be the �ght for lienses . . .40



2.4 Experimental investigationsThe �rst experiment is an investigation of the in�uene of integer onstraints to the so-lution, sine there is no guarantee for an integer solution any more. In addition, integeronstraints make linear programs muh harder to solve, so that one possibly only gets asuboptimal solution. The seond experiment is a test how the weighting of the margin af-fets the solution, and the third experiment illustrates the behavior on random graphs. Theompliations with CPLEX lienses limited the number of repetitions in the experiments.2.4.1 LP versus MILPIdeally, we would like to have binary labels to assign the nodes to the two lusters. However,the modi�ed problems (2.3.4) and (2.3.6) do not guarantee an integer solution. To testthe in�uene of integer onstraints on the labels, we reated random Gaussian graphs andsolved the original Max�ow and Minut problems (Eq. (2.3.2) and (2.3.3), respetively) aswell as the modi�ed Minut and �ow problem. The Minut with margin was solved withand without integer onstraints on the labels. The experiment was repeated with di�erentrandom graphs and CPLEX used for optimization. As expeted, the original and its dual aswell as the modi�ed Minut LP and its dual had the same objetive values in the end. Thelabels of the modi�ed problem, however, ended up to be non-integer. The integer onstraintsresulted in a higher objetive, whih is less optimal for a minimization problem.Sine the ultimate goal is to obtain a lustering, solving without integer onstraints willlead to the problem of how to infer luster assignments from ontinuous labels, with therisk of a suboptimal assignment. Hene the LP problem is only a relaxation, similar to thespetral relaxation from integer to ontinuous variables.2.4.2 The in�uene of the margin's weightThe next experiment aims to investigate the in�uene of the weighting fator λ of the margin.We used seven di�erent graph types from two to four Gaussian lusters. Eah luster had40 or 60 points, sampled from Gaussian distributions with di�erent means and varianesin two dimensions (see Table 2.2). The soure and sink nodes were sampled from di�erentGaussians.graph σ no. of points means varianes1 0.5 40, 40 µ1 = (0, 0), µ2 = (2, 2) Σ1 = I, Σ2 = (1, 0; r, 1)2 0.45 40, 60 µ1 = (0, 0), µ2 = (2, 2) Σ1 = I Σ2 = (1, 0; r, 1)3 0.5 40, 40 µ1 = (0, 0), µ2 = (2, 3) Σ1 = I Σ2 = (1, 0; r, 1)4 0.5 40, 40 µ1 = (0, 0), µ2 = (2, 2) Σ1 = I, Σ2 = I5 0.5 40, 40, 40 µ1 = (−1.6, 0), µ2 = (1.6, 0),
µ3 = (0,

√
3 · 1.6)

Σ1 = Σ2 = Σ3 = I6 0.4 40, 40, 40, 40 µ1 = (−1,−1), µ2 = (−1, 1),
µ3 = (1,−1), µ4 = (1, 1)

Σi = I7 0.4 40, 40, 40, 40 µ1 = (−1.25,−1.25), µ2 =
(−1.25, 1.25), µ3 = (1.25,−1.25),
µ4 = (1.25, 1.25)

Σi = ITable 2.2: Graphs for the weight experiments. r ∈ [0, 1] is a random number. All graphs arenearest neighbor graphs with 5 neighbors; σ is the parameter for reating the edge weights:
exp(−‖x − y‖2/(2σ2)), where x and y are the oordinates of the adjaent nodes.41
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Figure 2.4.1: In�uene of λ on the lustering for graph types 1 to 7. The number inparentheses is the number of lusters in the given graph.
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λ 0.0 1.0 2.0 3.0 3.6
|C0| 119 79 79 104 104
|C1| 1 41 41 16 16
% error 32.5 5.8 5.8 20.0 20.0
Cut(f) − λρ 2.64 3.12 2.95 2.71 2.46
ρ(f) -1.00 0.17 0.17 0.44 0.44
Cut(f) 2.64 3.29 3.29 4.03 4.03Figure 2.4.2: Illustration of the partitions for Graph 5 with varying λ.The optimization was solved for four instanes of graph type 1 and two instanes ofeah other type. The weighting λ was set to {0, 1, 2, 3, w, 5w/n), where w is the averageedge weight. The latter test values take into aount that the in�uene of λ also dependson the average edge weight, as the edge weights determine the magnitude of the ut value.Figure 2.4.1 shows how ertain values of the partition develop as λ is inreased. The valuesare averages over the instanes. In general, sine the solutions are disrete, the values hangein steps. After the weighting exeeds a ertain threshold, the solution hanges and remainsstable until the next threshold. The threshold depends on the margin and ut value of theother solutions.As expeted, the higher the weight of the margin, the more it is onsidered in theoptimization, and hene inreases with the inrease of λ. For the original Minut (λ = 0),the margin is often negative, as one point is ut o�. If the ut is weighted highly relativeto the margin, then the partition with the lowest ut value is hosen. As the importaneof the margin rises, di�erent solutions with larger margin and higher ut value are better,beause the margin an outweigh the ut value with a su�ient weight.The �gure also shows the relative size of the largest luster ompared to all points. Itusually dereases as λ inreases, indiating that the balane of luster sizes improves. But,43



when the margin weight inreases further, it may also grow again, if a less balaned partitionis more loally stable. Without the margin, Minut often leads to solutions where a smallfration of points or even a single node is ut o� the rest, suh that only few edges are ut.In suh a small group, it is however very likely that one node ontributes a large share of theut edges, leaving it with a very low margin. Hene the margin riterion leads to a minimumsize of the lusters where no node ontributes more than a limited part of its edges to theut.The �mislassi�ation� was omputed as lassi�ation error, if the generating Gaussiandistributions are onsidered as lasses. Via the balaning of luster sizes, the margin reduesthis error in most examples.Figure 2.4.2 illustrates the partitions for one example (graph type 5) with varying λ.The plot on the upper left shows the lusters by their generating soures. Without margin,one node is ut o� the rest. A small weight of the margin, however, hanges the optimalsolution to a more balaned partition. An inrease of more than λ = 2 leads to yet anotherpartition that separates a smaller, denser group.In summary, the margin remedies the tendeny of Minut to separate one node o� therest, leading to lusters of a minimal size. In addition, the margin favors groups that areseparated and well-onneted within the group.2.4.3 Uniform distribution: in�uene of the initialization of soureand sinkIn order to investigate the in�uene of the initialization, that is the assignment of s and t,we reated graphs with n = 80, 100 and 150 nodes from a uniform distribution (3 instanesfor eah number of nodes). Usually not generating distinguishable lusters in the graph, theuniform distribution will reveal the e�et of the initialization in its extreme. If there arelusters, the e�et might be less strong.The node oordinates are in [−1, 1]2, and the soure and sink were hosen in variouspositions:1. in opposite orners: s = (−1,−1), t = (1, 1)2. both lose together in one orner: s = (−1,−1), t = (−0.95,−0.95)3. s in the enter, t in orner: s = (0, 0), t = (1, 1)4. both in the middle: s = (0, 0), t = (0.05, 0.05)5. both within opposite quadrants: s = (−0.4,−0.4), t = (0.4, 0.4)6. s in the enter, t hosen randomly from the sample points7. both hosen randomly from the sample points8. in opposite orners: s = (1,−1), t = (−1, 1).Unless they were hosen from the sample points, s and t were added to the n nodes. Inaddition, λ was varied between 1 and 20, and also set to the average edge weight.First, the hange of results for varying λ and initialization was tested with n = 80 and
n = 100 nodes (3 examples eah). One riterion to hoose the best solution from di�erentinitializations is the objetive funtion value MCM(f). For eah value of λ, we hose thesolution with the best MCM. Figure 2.4.3 shows these results. The �rst plot illustrates the44
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Figure 2.4.3: Optimization results for a uniform distribution, n = 100. The �rst plotillustrates the density in the graph, the seond the solution for spetral lustering (Nut),and the third the optimum for the Minut problem. The remaining plots are the partitionsfor the ut with margin, l denotes λ, and f is the value of the objetive, MCM.density in the graph measured by the degree of the nodes. Dark warm olors denote a higherdensity, dark old olors a lower density. In this respet, luster limits for solutions withgood objetive values are not always in regions of low density. The uts aount for theatual existing edges, and so utting a large amount of low-weight edges does not neessarilyyield a lower ut value than utting few heavy edges, as long as those heavy edges are nottoo large a fration of their adjaent nodes' degrees. The seond plot displays the result ofnormalized spetral lustering. The Nut objetive favors a balaned partition with a utthat is not too large. Nevertheless, the Minut margin is negative for this solution. Theremaining plots show the best initializations by MCM(f). For this graph, initialization 1yields the best solutions for all values of λ, and the best partition is always the same. Inother examples, the best initialization varied with λ. Here, the best Minut solution hasboth a relatively large margin and a low ut. Other Minut solutions resulted in betterbalaning, but due to the uniform distribution larger lusters also mean that more edgesare ut, and hene only a great gain by the margin an ounterat the high ut value.The di�erene of the results for this example, depending on the position of soure andsink, is demonstrated in Figure 2.4.4. Usually, a dense subregion around one speial node isut o� the rest. As λ inreases, single-node lusters are disfavored in addition. From left toright, top to bottom, λ takes values 0, 1.94, 10, and 20. Partiularly di�ult is initialization4, where both s and t are losely adjaent in the enter. The partition must ut this heavyedge. Moreover, this graph hardly has any nodes lose to the soure, apart from t. Minutseparates the soure, but even with higher λ only one or two nodes are added to the soureluster. Similarly, initialization 2 separates the soure. To remedy the margin of −1, higherweightings of ρ lead to solutions where two other nodes join the sink, but not the losestnode besides the sink. The other initializations lead to visually more satisfying partitions.The observations for all graphs are similar to those for the illustration. In summary, of-45



ten, utting out a small and dense (relatively to the rest) luster yields the best MCM value.As λ inreases gradually, the balaned lusters beome more balaned. Often, though, thebalaning deteriorates for large λ. Partly, the same lusters are disovered that Nut �nds,but they are usually not the optimal ones by the MCM objetive. Furthermore, as above,the initialization has a great in�uene on the outome, at least for uniform distributions. Inpart, however, the solutions are the same, if there is some (visual) struture.Apart from the in�uene of λ and s,t, the number k of neighbors in the k-nearest neighborgraph, was varied between 4 and 7 for n = 80, 100, 150 (2 examples eah). Some tendeniesfor this small number of examples seem to exist: for small weights of the margin, the lustersappear to be more balaned (by number) if k is small, for large λ this is the ase if k islarge. This observation might be an e�et of the inreased ut value and degree as k grows.Furthermore, Minut's preferene of very small lusters seems higher for larger k, possiblyagain beause of the inreased ut value for larger groups, espeially if the group is not wellinteronneted.In general, the experiments with a uniform distribution show a signi�ant in�uene of theinitialization. The di�erenes may be less strong, however, if the graph has more struture.2.4.4 SummaryIn summary, the experiments show that (i) the �ow problem is only a relaxation of theproblem with integer labels, bringing up the problem of the disretization of labels; (ii) themargin mainly remedies Minut's preferene for single-node lusters, but only on a loalsale, favoring the uto� of densely onneted subregions; (iii) the initialization an play agreat role, partiularly for graphs with weak struture. In addition, the illustrations withtoy graphs in Setion 2.2.3 reveal that the margin de�nes equivalene lasses of partitions.
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Figure 2.4.4: Optimization results for a uniform distribution for varying λ and initializations. Di�erent soure and sink nodes lead tovery di�erent partitions. The margin weight λ of 0 (upper left panel), 1.94 (top right), 10 (bottom left) and 20 (bottom right panel) isdenoted l in the last plot of eah panel. Eah panel hows the 7 di�erent initializations. f is the objetive funtion value, m the utvalue and r the margin.
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2.5 Disussion and CritiqueLet us take a step bak and put the Minut margin into a more global piture. Are the resultsintuitively reasonable? Does the modi�ation meet the initial goals? The interpretation ofmargins in Setion 2.1 stated three advantages: robustness, simpliity and generalizationability. Before we turn to these riteria, let us make a note on the �rst question.Judging by the experiments, the Minut with margin riterion is an improvement uponthe mere Minut objetive beause it avoids tiny lusters, partiularly of single nodes, inthe outome. Instead, it favors the uto� of densely onneted, separated subgroups inthe graph. On a loal sale, this tendeny seems reasonable, but what about the globalpiture? The underlying goal was to minimize the expeted risk for the entire graph. Theglobal struture of the graph is only indiretly onsidered via the loal interonnetions anddensities. Eigenvalue riteria suh as used in spetral lustering, might diretly inlude amore global piture.Global and loal stabilityBy its de�nition, the margin is large if the points may be perturbed a lot without betterbeing assigned to another luster. This type of robustness is losely related to the questionof the stability of the partition optimizing Qn for di�erent n and di�erent samples. Forlassi�ation, stability of fn usually omes with onsisteny (f. Setion 1.1.2). For luster-ing, loseness of Q(f) and Q(g) may not imply loseness of f and g. Our graph marginsompare one partition to the ones di�ering by the assignment of one point, under the aspetof perturbation. But what about the swap of an entire densely onneted group? Whilstthe move of the group may improve the ut, the reassignment of a single member probablywon't. Hene, it is possible that a modi�ation of the edge weights below the limit of themargin leads to another partition being optimal, one that di�ers by more than the assign-ment of the node in question. Suh behavior is overed by none of the above margin riteria.In that sense they are all loal. A global riterion would onsider any other partition tobeome better if the graph is perturbed. Suh a measure, but for an instane rather than apartition, is the distintness de�ned in Bilu and Linial [2004℄ (see Setion 2.2.1).Indeed, Bilu and Linial [2004℄ show that global stability (the optimality of the parti-tion with regard to all other possible partitions) implies loal stability, but not vie versa.(Maxut is NP-hard even for loal stability.) The demonstration by an example for ourmultipliative margin an be transferred to Minut: Consider a graph G with an optimalpartition with margin ρ. From this graph, we onstrut another graph G× with an analogouspartition of the same global stability, but arbitrary loal stability. G× has nodes V ×{0, 1}.Connet nodes {vi, 0} and {vi, 1} by an edge of weight τ maxv∈V d(v) = τ maxv∈V w(v, V )(in G), τ ≥ 1. Then eah node has at least a margin of τ , so the margin of the partition isat least τ . By inreasing τ , the loal stability or margin an be modi�ed arbitrarily, whilethe global stability remains the same.By their de�nition of global stability, however, only the optimal Minut an be stable,beause for all other partitions, there already exists a better partition without any pertur-bation. Thus, suh a global riterion in our �margin against perturbation� approah wouldonly reinfore the ut minimizing the empirial error. It is thus a property of the graphalong with its optimal ut, and not of any partition. So the global stability of a partitionrequires another de�nition and provides future work. In addition, the global stability isexpensive to ompute, due to the exponential number of uts to ompare to. The questionremains open whether heaper loality is enough. Unlike for lustering, for linear lassi�ers48



in a �reasonable� problem (Q(f∗) ≪ 0.5), loal and global stability may be more related,beause the labels already provide some struture.Global stability is losely related to the set of almost-minimizers of Qn and Q. If thediameter of this set does not onverge to zero as n → ∞, there will always be several distintminima, and only a small perturbation will su�e to make one superior to the other. Inthat respet, global stability is related to the uniqueness of the optimum (within a ertainlose range of quality), but maybe not an appropriate riterion for piking fn.Generalization?Another big issue are generalization bounds, stating that a large margin prevents over�tting,so that Q(fn) onverges to Q(f∗). Intuitively, the uto� of a single node is nothing withgood generalization abilities. The Minut margin avoids this behavior.As also shown experimentally in Setion 2.4, the Minut margin de�nes lasses of par-titions with the same ρ. The funtions within one lass di�er by the assignment of densesubgroups. The atual omplexity of one lass, however, remains unlear. In some sense,the unnormalized margin is a measure for the loal sharpness of a minimum. Sharp lo-al minima, for ontinuous funtions, are important in optimization theory for onvergeneproperties of algorithms [see e.g. Burke and Ferris, 1993℄.In that sense, the restrition via loal margins may provide a type of �over� of F . Ifa partition has a positive margin, then none of its immediate neighbors (di�ering by theassignment of one point, that is Hamming distane one) an have a positive margin, beauseotherwise it would be better to swap the di�ering point without a hange of weights. Theexat type of restrition of Fρ and its omplexity, however, still remain to be determined.This would be neessary to study generalization bounds.What do the remaining andidates, the almost-minimizers of Qn + ρ, look like? If thelusters are separated by a low density region, then, with high probability, a partition loseto f∗ will have a deent margin or low ut value (or both), beause it is not likely to samplea point from the low density region. If the sampling is sparse, however, there may also beother empirially good andidates that ut through a luster and thus are �far apart� in Ffrom f∗. The only remedy will be more samples, beause it is more likely to sample a pointfrom a high density region than from the separating low density region. If there is, however,symmetry in the data, so that f∗ is not unique in the set of almost-minimizers of Q, thenthe margin may not help to identify f∗. It is then still possible, however, that Q(fn) is loseto Q(f∗) as n grows. A question is if the margin provides any guarantees in that regard,pointing bak to the question of the omplexity of Fρ with respet to the magnitude of ρ.Indeed, it is easy to �mess up� the margin by an outlier point in the low density region thatis onneted roughly equally to both lusters.Algorithmi restritionsApart from open theoretial questions, the implementation of the margin approah in thishapter brings some algorithmi restritions. First, the optimization problem is so farrestrited to K = 2 lusters. For more lusters, the initial two lusters may be partitionedreursively. This reursion may, however, ome with a loss in the quality of the results. Anextension of the MILP to more than two lusters will raise its omplexity. Another drawbakis the relaxation. Our aim was to failitate the lustering problem via SLT strategies. Butonly the LP has polynomial omplexity [Khahiyan, 1979℄, integer linear programs are in NP49



[Papadimitriou and Steiglitz, 1982, p. 343℄, and thus also MILPs. The relaxation, though,brings up questions like the transformation of ontinuous to disrete labels.As a last point, the result depends on the initialization of soure and sink, so the algo-rithm should be repeated a polynomial number of times if there is no prior knowledge.The open questions provide lots of future work. Some of them are answered for thelustering algorithm we turn to in the next hapter. It is not a relaxation and proved to beonsistent.
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Chapter 3Seond approah: Nearestneighbor lusteringA general strategy to ahieve statistial onsisteny is the redution of the lass F of an-didate funtions (see Setion 1.1.2). Here, we will restrit F in a data-dependent way: wewill divide the graph into neighborhoods around O(log n) seed nodes and require the parti-tion funtion to be onstant within eah neighborhood. For a �xed neighborhood struture,only a polynomial number of andidate partitions remains. Hene, they an be enumeratedin polynomial time to �nd the best amongst them, and the NP hard optimization prob-lem is transformed into one in P. This transformation is based on �reasonable� strategiesmotivated by statistial learning theory, rather than on (often unontrollable) heuristis orrelaxations. A branh and bound approah will further limit the average-ase omplexity.Nearest neighbor lustering is ompatible with a variety of ut riteria suh as Nut, Rutand WSS. Above all, this algorithm an be proved to be statistially onsistent.In experiments, we will ompare this approah to spetral lustering and the k-meansalgorithm, with respet to the lustering of a graph and its generalization. In addition, wewill examine di�erent distane funtions for onstruting the neighborhoods, and attemptan analysis of the impat of the seletion of seeds.Parts of this hapter have been published in von Luxburg et al. [2007a℄.3.1 Nearest neighbor lusteringNearest neighbor lustering realizes the redution of the funtion lass by a restrition tofuntions that are onstant within ells of the data spae. We will now outline the basiidea, its realization and the omplexity of the resulting algorithm.In the following, we assume to be given a set of data points Zn = {X1, . . . , Xn} andpairwise distanes dij = d(Xi, Xj) or pairwise similarities sij = s(Xi, Xj). Let Qn be the�nite sample quality funtion to optimize on the sample. To follow the statistial learningtheory approah outlined above, we have to optimize Qn over a �small� set Fn of partitionsof Zn. Essentially, we put three requirements on Fn: First, the number of funtions in Fnshould be at most polynomial in n. Seond, in the limit of n → ∞, the lass Fn shouldbe rih enough to approximate any measurable partition of the underlying spae. Third,in order to perform the optimization, we need to be able to enumerate all members of thislass. So the funtion lass Fn should be �onstrutive� in some sense. A onvenient hoie51



satisfying all those properties is the lass of �nearest neighbor partitions�. To de�ne thislass, we partition the graph into m ≪ n neighborhood regions. The lass then omprisesall funtions f : X → {1, . . . , K} that are onstant within the neighborhoods. Of thosefuntions, we hoose the one minimizing Qn.AlgorithmWe onstrut the neighborhoods as a Voronoi tessellation of the graph. To this end, werandomly sample m seed points Xs1
, . . . Xsm

among the n data points to be the �enters�of the ells. Eah point is then assigned to its losest seed. The points assigned to seed
Xsj form, together with the seed, the neighborhood set Zj . Note that this de�nition an bestated both for similarity and dissimilarity data. In the ase of dissimilarity data we buildthe Voronoi ells based on the nearest neighbor relation, while in ase of similarity valueswe build the ells based on the �most similar neighbor� relation.Obviously, the funtion lass Fn ontains O(Km) funtions, whih is polynomial in n ifthe number m of seeds satis�es m = m(n) = O(log n). Given Fn, the simplest polynomial-time optimization algorithm is the brute-fore approah to evaluate Qn(f) for all f ∈ Fnand hoose the solution fn = argminf∈Fn

Qn(f). We all the resulting lustering the nearestneighbor lustering and denote it by NNC(Qn).The omplete algorithm then inludes the following steps:1. Randomly hoose m seed points among the n data points X1, . . . , Xn.2. Assign eah non-seed point to its losest seed point to onstrut the neighborhoods
Zj , 1 ≤ j ≤ m. The neighborhoods form �super-nodes� Zj.3. Choose fn minimizing Qn from Fn; fn assigns a label to eah Zj . We will optimize thepartition on a ontrated graph where the neighborhoods are represented by super-nodes.4. The points Xi are labeled aording to their assigned neighborhood.ComplexityLet us take a loser look at the omplexity of this algorithm. For a �xed set of seeds, itruns in time O(nm + (q(n, m) + r(n, m))Km). The �rst term overs the onstrution ofthe Voronoi ells in a naive implementation. The seond part omes from omputing andevaluating all possible partitions. Let q(n, m) denote the omplexity of evaluating Qn(f)for a �xed funtion f 1. For Nut, q(n, m) = O(Kn2), whih may be redued to O(Km2)after a ontration that is done one and osts O(n2) (f. Subsetion 3.4.1). The term

r(n, m) represents the time to ompute one partition. The enumeration of F then osts
O(Kmr(n, m)). We an naively enumerate all partitions in Fn by a ount from 0 to Km ina K-ary system, assigning labels 0, . . . , K − 1. Suh a ount takes

m∑

ℓ=1

Kℓ =
Km+1 − 1

K − 1
= O

(
Km+1

K − 1

)steps, beause the �rst digit is hanged K times, the seond K2 times and so on. This resultsin an amortized ost of r(n, m) = O
(

K
K−1

)
= O (1 + 1/(K − 1)) per andidate partition.1In fat, q may also depend on the number of edges, whih is at most n2.52



Note that in suh a ount, some partitions are equivalent under a renaming of labels, so inpratie we an atually restrit the ount to those numbers where all labels our and their�rst appearane is in asending order from left to right.For example, if we hoose m = c log(n) for a small onstant c, we obtain polynomialruntime in O(n log(n) + (r(n, log n) + q(n, log n))nc log K). The n × n distane matrix isonsidered a preomputed input here. Distanes will be disussed in Setion 3.3.Stated in a general way like above, the NNC strategy is ompatible with a variety ofquality funtions. One popular riterion is the Normalized Cut objetive. Apart from Nut,we use RatioCut and the k-means objetive (WSS) in experiments. The proof of onsistenyomprises all these riteria.3.2 NNC is onsistentNearest neighbor lustering is statistially onsistent for many lustering quality funtions,that means Q(fn) onverges to Q(f∗) in probability. A omplete proof may be found inBubek and von Luxburg [2007℄, von Luxburg et al. [2007a℄2. Here we only provide a shortsummary of the main results.The theorems require the introdution of some further notation. First, we de�ne aprediate A(f) for eah lustering funtion f : Rd → {1, . . . , K} that implements someassumption. It may, for instane, be true if all lusters have a ertain minimal size. Theprediate An(f) is an �estimator� of A(f) based on a �nite sample only. The prediates willde�ne membership in the funtion lasses. Let m := m(n) ≤ n be the number of seeds usedin nearest neighbor lustering. To simplify notation we assume in this setion that the seedsare the �rst m data points; all results remain valid for any other (even random) hoie ofseeds. As data spae we use X = Rd. We de�ne:
NNm(x) := NNm(n)(x) := argminy∈{X1,...,Xm} ‖x − y‖ ( for x ∈ Rd)

F := {f : Rd → {1, . . . , K} | f ontinuous P-a.e. and A(f) true}
Fn := FX1,...,Xn

:= {f : Rd → {1, . . . , K} | f satis�es f(x) = f(NNm(x)), and An(f) is true}
F̃n :=

⋃
X1,...,Xn∈Rd FX1,...,Xn

.So Fn is the spae of nearest neighbor partitions based on a spei� sample, and F̃n theunion of suh spaes over all possible samples.Furthermore, let Q : F → R be the quality funtion we aim to minimize, and Qn : Fn →R an estimator of this quality funtion on a �nite sample. With this notation, the truelustering f∗ on the underlying spae and the nearest neighbor lustering fn introdued inthe last setion are given by
f∗ ∈ argminf∈F Q(f) and fn ∈ argminf∈Fn

Qn(f).In addition, the proof involves the optimum funtion ahievable in the subspae Fn and therestrition of the optimal f∗ to satisfy the nearest neighbor rule:
f∗

n ∈ argminf∈Fn
Q(f) and f̃∗(x) := f∗(NNm(x)).2The proof in Bubek and von Luxburg [2007℄ is more general with a variant of the prediate, but thetehniques are the same. The proof in von Luxburg et al. [2007b℄ is the same as the one skethed here. Notethat the proof is by Bubek and von Luxburg, and thus the only setion in this hapter that is not my work.53



As distane funtion between di�erent lusterings f, g we will use
Ln(f, g) := P{f(X) 6= g(X) | X1, . . . , Xn}(we need the onditioning in ase f or g depend on the data, it has no e�et otherwise).Endowed with the notation, we an turn to the theorems.Theorem 2 (Consisteny of nearest neighbor lustering). Let (Xi)i∈N be a sequene ofpoints drawn i.i.d. aording to some probability measure P on Rd, and m := m(n) thenumber of seed points used in nearest neighbor lustering. Let Q : F → R be a lusteringquality funtion, Qn : F̃n → R its estimator, and A(f) and An(f) some prediates. Assumethat:1. Qn(f) is a onsistent estimator of Q(f) whih onverges su�iently fast:

∀ε > 0, Km(2n)(d+1)m2

supf∈ eFn
P{|Qn(f) − Q(f)| > ε} → 0.2. An(f) is an estimator of A(f) whih is �onsistent� in the following way:

P{An(f̃∗) true} → 1 and P{A(fn) true} → 1.3. Q is uniformly ontinuous with respet to the distane Ln between F and Fn:
∀ε > 0 ∃δ(ε) > 0 ∀f ∈ F ∀g ∈ Fn : Ln(f, g) ≤ δ(ǫ) =⇒ |Q(f) − Q(g)| ≤ ε.4. limn→∞m(n) = +∞.Then nearest neighbor lustering as introdued in Setion 3.1 is weakly onsistent, that is

Q(fn) → Q(f∗) in probability.Proof. (Sketh) The proof bounds the probability of divergene, P (|Q(fn)−Q(f∗)| ≥ ε) byrepeatedly splitting it into terms that are bounded separately. We �rst remove the absolutevalue, then we split one part into estimation and approximation error that an be handledindependently.First, split the absolute value into its two sides:
P{|Q(fn) − Q(f∗)| ≥ ε} ≤ P{Q(fn) − Q(f∗) ≤ −ε} + P{Q(fn) − Q(f∗) ≥ ε}.As a onsequene of Assumption (2), fn ∈ F with high probability, so the �rst term on theright hand side onverges to 0.The main work onsists in bounding the seond term. By the triangle inequality with

f∗
n, we get the estimation and approximation errors:

P
{
Q(fn) − Q(f∗) ≥ ε

}
≤ P

{
Q(fn) − Q(f∗

n) ≥ ε/2
}

+ P
{
Q(f∗

n) − Q(f∗) ≥ ε/2
}
.Estimation Error. One an show that

P{Q(fn) − Q(f∗
n) ≥ ε/2} ≤ P{supf∈Fn

|Qn(f) − Q(f)| ≥ ε/4}.Even though the right hand side resembles the standard quantities often onsidered instatistial learning theory, it is not straightforward to bound as we do not assume that
Q(f) = EQn(f). To irumvent the further ompliation of the data-dependeny of Fn, wereplae it by the larger lass F̃n, whih is not data dependent. Using symmetrization by a54



ghost sample (f. [Devroye et al., 1996, Se. 12.3℄), we then move the supremum out of theprobability:
P
{

sup
f∈Fn

|Qn(f) − Q(f)| ≥ ε/4
}

≤ 2SK(F̃n, 2n)
supf∈ eFn

P
{
|Qn(f) − Q(f)| ≥ ε/16

}

inff∈ eFn
P
{
|Qn(f) − Q(f)| ≤ ε/8

}(3.2.1)The unusual denominator in Equation (3.2.1) emerges in the symmetrization step as we donot assume Q(f) = EQn(f). The bound also involves the shattering oe�ient SK(F̃n, 2n)(f. Setion 1.1.2). It is well known [e.g. Devroye et al., 1996, Se. 21.5℄ that the number ofVoronoi partitions of n points using m ells in Rd is bounded by n(d+1)m2 , hene the numberof nearest neighbor lusterings into K lasses is bounded by SK(F̃n, n) ≤ Kmn(d+1)m2

.Hene, Assumption (1) implies that for �xed ε and n → ∞ the right hand side ofEquation (3.2.1), and thus also the estimation error, onverges to 0.Approximation Error. For the approximation error, we replae f∗
n by f̃∗. If An(f̃∗)is true, then f̃∗ ∈ Fn, and by the de�nition of f∗

n we have
Q(f∗

n) − Q(f∗) ≤ Q(f̃∗) − Q(f∗) and thus
P
{
Q(f∗

n) − Q(f∗) ≥ ε
}

≤ P{An(f̃∗) false} + P
{
f̃∗ ∈ Fn and Q(f̃∗) − Q(f∗) ≥ ε

}
.The �rst term on the right hand side onverges to 0 by Assumption (2). The seondexpression an be bounded via the distane Ln, using Assumption (3):

P
{
f̃∗ ∈ Fn, Q(f̃∗) − Q(f∗) ≥ ε

}
≤ P

{
Q(f̃∗) − Q(f∗) ≥ ε

}
≤ P

{
Ln(f

∗, f̃∗) ≥ δ(ε)
}
.Tehniques from Fritz [1975℄ help to show that if n is large enough, then the distanebetween a funtion f ∈ F evaluated at x and the same funtion evaluated at NNm(x) issmall. Namely, for any f ∈F and any ε > 0 there exists some b(δ(ε)) > 0 whih does notdepend on n and f suh that

P{Ln(f, f(NNm(·))) > δ(ε)} ≤ (2/δ(ε) exp(−mb(δ(ε))).The quantity δ(ε) has been introdued in Assumption (3). Assumption (4) ensures that forevery �xed ε, the right hand side onverges to 0, making the approximation error vanish.Let us apply the general theorem to partiular objetive funtions. We sketh the prooffor Nut and only mention the result for other objetives in Theorem 4. Let the similarityfuntion s : Rd × Rd → R+ be upper bounded by a onstant C. For a lustering f : Rd →
{1, . . . , K} denote by fk(x) := 1f(x)=k the indiator funtion of the k-th luster. De�ne theempirial and true ut, volume, and Normalized ut as follows:
cutn(fk) := 1

n(n−1)

∑n
i,j=1 fk(Xi)(1 − fk(Xj))s(Xi, Xj)

cut(fk) := EX,Y

(
fk(X)(1 − fk(Y ))s(X, Y )

)

voln(fk) := 1
n(n−1)

∑n
i,j=1 fk(Xi)s(Xi, Xj) vol(fk) := EX,Y

(
fk(X)s(X, Y )

)

Ncutn(f) :=
∑K

k=1
cutn(fk)
voln(fk) Ncut(f) :=

∑K
k=1

cut(fk)
vol(fk)Unlike the empirial risk in lassi�ation, the quality estimator Qn = Ncutn for Nut, is notunbiased: ENcutn(f) 6= Ncut(f). Hene, in the proof we will resort to its unbiased partsinstead: E cutn(f) = cut(f) and E voln(f) = vol(f). The prediate will embody a onstraint55



on luster sizes: �x a onstant a > 0, a sequene (an)n∈N with an ≥ an+1 and an → a andde�ne
A(f) is true : ⇐⇒ vol(fk) > a ∀k = 1, . . . , K

An(f) is true : ⇐⇒ voln(fk) > an ∀k = 1, . . . , K (3.2.2)Theorem 3 (Consisteny of NNC(Ncutn)). Let (Xi)i∈N be a sequene of points drawni.i.d. aording to some probability measure P on Rd and s : Rd × Rd → R+ be a similarityfuntion whih is upper bounded by a onstant C. Let m := m(n) be the number of seedpoints used in nearest neighbor lustering, a > 0 an arbitrary onstant, and (an)n∈N amonotonially dereasing sequene with an → a. Then nearest neighbor lustering using
Q := Ncut, Qn := Ncutn, and A and An as de�ned in (3.2.2) is weakly onsistent if
m(n) → ∞ and m2 log n/(n(a − an)2) → 0.Proof. To hek that all assumptions of Theorem 2 are satis�ed, we �rst establish that
{| cutn(fk) − cut(fk)| ≤ aε} ∩ {| voln(fk) − vol(fk)| ≤ aε} ⊂

{∣∣∣∣
cutn(fk)

voln(fk)
− cut(fk)

vol(fk)

∣∣∣∣ ≤ 2ε

}
.Applying the MDiarmid inequality to cutn and voln, respetively, yields that for all f ∈ F̃n

P{|Ncut(f) − Ncutn(f)| > ε} ≤ 4K exp

(
− na2ε2

8C2K2

)
.Together with m2 log n/(n(a − an)2) → 0 this shows Assumption (1) of Theorem 2. Theproof of Assumption (2) is a bit tehnial, but in the end also follows by applying theMDiarmid inequality to voln(f). Assumption (3) follows by establishing that for f ∈ Fand g ∈ Fn we have

|Ncut(f) − Ncut(g)| ≤ 4CK

a
Ln(f, g).As examples for other quality funtions ompatible with onsistent NNC, onsider Ra-tioCut, Within-sum-of-squares, and the ratio of between- and within-luster similarity:

RatioCutn(f) :=
∑K

k=1
cutn(fk)

nk
RatioCut(f) :=

∑K
k=1

cut(fk)Efk(X)

WSSn(f) := 1
n

∑n
i=1

∑K
k=1 fk(Xi)‖Xi − ck,n‖2 WSS(f) := E∑K

k=1 fk(X)‖X − ck‖2

BWn :=
∑K

k=1
cutn(fk)

voln(fk)−cutn(fk) BW :=
∑K

k=1
cut(fk)

vol(fk)−cut(fk)Here nk :=
∑

i fk(Xi)/n is the fration of points in the k-th luster, and ck,n :=
∑

i fk(Xi)Xi/(nnk)and ck := Efk(X)X/Efk(X) are the empirial and true luster enters.Theorem 4 (Consisteny of NNC(RatioCutn), NNC(WSSn), and NNC(BWn)).Let fn and f∗ be the empirial and true minimizers of nearest neighbor lustering us-ing RatioCutn, WSSn, or BWn, respetively. Then, under assumptions similar to theones in Theorem 3, we have RatioCut(fn) → RatioCut(f∗), WSS(fn) → WSS(f∗), and
BW(fn) → BW(f∗) in probability. For details, see von Luxburg et al. [2007b℄.56



3.3 Distane funtionsAn important part from a pratial viewpoint is the onstrution of the neighborhoods.Eah node in the graph is assigned to its losest seed. To measure loseness, we need adistane measure between nodes in the graph. Its importane lies in the determination ofthe struture of the neighborhood ells and hene its impat on the solution by de�ning Fn.The proof above is based on the Eulidean distane. The result might be extendedto other distanes, partiularly those that behave �reasonably� in the limit, that means as
n → ∞, eah point has a nonempty ε-neighborhood, should be appliable as well3.In the following, we will introdue a variety of distanes that we used, the Eulideandistane as well as graph-spei� distanes motivated by Markov hains, random walks andeletrial networks.To remain in P, the matrix of distanes between seed nodes and all other points mustbe onstrutible in polynomial time. By the formulas given below, all distanes an beomputed in polynomial time, and hene also all the O(n log n) distanes required for theonstrution of the neighborhoods. Some of the distanes below require eigenvalues and-vetors. Note that the arithmeti omplexity of solving the eigenproblem for an n × nmatrix to a relative preision of 2−b is in O(n3 +n(log2 n) log b) [Pan and Chen, 1999℄. (Foran overview of eigenvetor methods for symmetri matries, see e.g. Dhillon [1997, Ch. 2℄.)Eulidean distaneThe Eulidean distane between two points X , Y ∈ Rd is de�ned as

√√√√
d∑

i=1

(X(i) − Y (i))2,where X(i) and Y (i) denote the i-th entry in the vetors X and Y , respetively. It is aommonly used distane in real spaes and generates irle-shaped neighborhoods. If theinput data is given as a graph with edge weights, however, it needs to be embedded in someEulidean spae Rd for appliability of this distane. The embedding an then have a greatin�uene on the result, and there are various possibilities to hoose it and its dimension d.Hene, other distanes that aount for the struture of the graph may be better suited.Commute or Resistane distane and its interpretationsThe ommute distane is ommonly used for graphs and has been investigated in a numberof di�erent respets. Two interpretations omplement eah other: the expeted travelingtime in a random walk, and the resistane in an eletrial network. The former onept isrelated to Markov hains.First onsider distane in light of a random walk on the given graph. Given a start node,we randomly hoose an adjaent node to whih we transfer. The random walk onsists of asequene of suh transitions. In a �nite, undireted graph, suh a walk is atually a �nite,time-reversible Markov hain [Lovász, 1993℄. Properties of and onnetions between randomwalks, Markov hains and eletrial networks are disussed in Lovász [1993℄, Bollobás [1998,Ch. 9℄ and Aldous and Fill [2001, Ch. 3℄. Starting at node Xi, the probability to diretly3If, in the limit n → ∞, some points beome separated, the distane is probably not appropriate for allobjetives in extreme ases (see the ounterexample in Figure 3.3.1, desribed below).57



get to node Xj is
p(Xi, Xj) =

w(Xi, Xj)

d(Xi)
,where d(Xi) is the degree of Xi. In suh a setting, the ommute distane C(Xi, Xj) between

Xi and Xj is the expeted number of steps it takes to travel from Xi to Xj and bak.Let us look at some ways to ompute the distane. Diret formulas have been proved interms of the normalized and unnormalized Laplaian. We outline both alternatives.1. Let Lrw = I−D−1W be the normalized Laplaian of the graph, where D is a diagonalmatrix with D(i, i) = w(Xi, V ). Lovász [1993℄ shows that
C(Xi, Xj) = 2 vol(G)

n∑

k=2

1

λk

(
vkj√
d(Xj)

− vki√
d(Xi)

)2 (3.3.1)where λk is the k-th eigenvalue of Lrw and vki the i-th entry in the k-th eigenvetorof Lrw. Here and in the following, we number eigenvalues in nondesending order, so
λ1 = 0. The volume is vol(G) = w(V, V ). This formula is losely related to Expression(3.3.3) for the hitting time, beause C(Xi, Xj) = H(Xi, Xj) + H(Xj, Xi).Formula (3.3.1) shows that the ommute time depends on the di�erene of the eigen-vetor entries, weighted by the inverse of the orresponding eigenvalue. The Fiedlervetor will hene have the greatest in�uene. Spetral lustering usually partitions thepoints into lusters aording to their entries in the Fiedler vetor, but only onsidersthis seond eigenvetor.2. Aording to Klein and Randi¢ [1993℄ (see also [Gutman and Xiao, 2004, Xiao andGutman, 2003℄), the ommute distane an also be omputed via the pseudoinverse ofthe (unnormalized) graph Laplaian L = D − W :

C(Xi, Xj) = L†(i, i) + L†(j, j) − L†(i, j) − L†(j, i) =

n∑

k=2

1

λk
(vki − vkj)

2. (3.3.2)Here, λk is the k-th eigenvalue of L and vki the i-th entry of the k-th eigenvetor of
L.Let us turn to some further relations and interpretations of the ommute distane.For an unweighted graph, the ommute distane is related to the expeted sojourn time

Sk(Xi → Xj), the expeted number of times Xk is visited before we reah node Xj , startingfrom Xi: C(Xi, Xj)/(2 vol(G)) = Si(Xi → Xj)/d(Xi) [Bollobás, 1998, p. 315℄. It seemsreasonable that there is a onnetion between the ommute time and the expeted numberof revisits of Xi before Xj is reahed. This normalized ommute time also equals the ex-peted number of times any edge is traversed on a walk from Xi to Xj and bak [Bollobás,1998, p. 315℄.Apart from the random walk view, the distane may be interpreted with respet toeletrial networks and springs. Consider the graph as an eletrial network, where theinverse edge weights de�ne resistanes between the nodes. Then the ommute time betweennodes Xi and Xj orresponds to the resistane R(Xi, Xj) between Xi and Xj in the iruit:
C(Xi, Xj) = 2 vol(G)R(Xi, Xj) [Lovász, 1993℄. Resistane distane is also studied in Kleinand Randi¢ [1993℄. 58



Furthermore, an unweighted graph an be viewed as a system of springs with unitHooke onstant. Nail nodes Xi and Xj down at positions 1 and 0 on the real line.The graph will �nd its equilibrium. The fore pulling the nails is then the ondutane
1/R(Xi, Xj) = 2 vol(G)/C(Xi, Xj). The energy of the system is 1/(2R(Xi, Xj)) [Lovász,1993℄.Returning to NNC and its neighborhood struture, note that the ommute distane mayimpliitly balane neighborhood sizes. This tendeny ould be favorable for riteria thatinlude balaning, suh as Nut or RatioCut. Let us detail the intuition behind the balaneonjeture. Neighborhoods are onstruted around seed nodes. A node Xi is assigned tothe seed that it reahes fastest by expetation, inluding the return time to Xi. Or, fromthe other perspetive, a seed �gets� the nodes that it reahes �rst, if the expeted returntime is also onsidered. If a seed node Xs has many neighbor nodes (in a high-densityregion), the onnetion to eah will only form a small part of its degree, and hene thetransition probability to eah neighbor is relatively low. This dereased probability leadsto a larger expeted time to reah any adjaent node and other nodes �behind� it, unlessthose nodes are well-onneted to most diret neighbors of Xs. If the target node is well-onneted to many other nodes, then again the probability of �distration� is higher for thereturn. Hene, a neighborhood of suh a well-onneted, �heavy� seed may spread in manydiretions, but not too far, whereas a seed with few neighbors (in a low-density region)reahes them �faster� and thus may over a wider area. This is, however, just a onjeturewithout any mathematial proof.Hitting time or Aess timeThe hitting or aess time H(Xi, Xj) in a Markov hain or random walk is the expetednumber of steps before node Xj is visited, starting at node Xi [Lovász, 1993℄. Hene, theommute time is the hitting time from Xi to Xj and bak: C(Xi, Xj) = H(Xi, Xj) +
H(Xj , Xi).Like the ommute distane, it an be omputed via the graph Laplaian, as desribedin Lovász [1993℄. The matrix H of hitting times is the solution of the equation LrwH =
1n×n − 2 vol(G)D. Even though Lrw is singular, we know that H(i, i) = 0 for all nodes Xi.Hene, we ompute H by subtrating from eah olumn of Ĥ = L†

rw(1n×n − 2 vol(G)D) itsdiagonal entry.For an unweighted graph (weights in {0, 1}), the hitting time an be expressed as
H(Xs, Xt) = 2 vol(G)

n∑

k=2

1

λk

(
v2

kt

d(Xt)
− vksvkt√

d(Xs)d(Xt)

)
, (3.3.3)where λk is the k-th eigenvalue of Lrw and vks the s-th entry in the k-th eigenvetor of Lrw.Note that, in ontrast to the ommute distane, the hitting time is not symmetri: ingeneral H(Xi, Xj) and H(Xj , Xi) di�er.Similar to the ommute distane, the hitting time an be expressed in terms of eletrialnetworks [Chandra et al., 1996℄. In the iruit desribed by an unweighted graph, injet

d(Xj) units of urrent into eah node Xj ∈ V , and remove 2|E| units from Xi. Then
H(Xi, Xj) denotes the voltage V̂ (Xj) − V̂ (Xi) at Xj for all Xj ∈ V . By a hange ofsigns, H(Xj , Xk) is the voltage at Xj relative to Xk (i.e. V̂ (Xj) − V̂ (Xk)) if 2|E| units ofurrent are injeted at Xj and d(Xk) extrated at eah Xk ∈ V . A superposition of the �rstand seond urrent leads to a net urrent of 2|E| from Xj to Xi. With this urrent, the59



voltage di�erene of Xj and Xi is H(Xi, Xj) + H(Xj , Xi) = C(Xj , Xi) = 2|E|R(Xj , Xi),the ommute distane or resistane, in onformity with Ohm's law.Note that the hitting time o�ers di�erent ways to onstrut the neighborhoods, beauseit is not symmetri. One ould either take the distane from a seed to a point or vieversa. In the experiments below we hose the latter, whih oneptually orresponds to ageneralization from the point's perspetive: starting a random walk at the node, assign itto the seed that it reahes �rst, by expetation.Variations based on the Commute distaneIn some ases, the eigenvetors of the unnormalized Laplaian may approah Dira funtions.This an happen for the eigenvetors whose orresponding eigenvalues are not signi�antlybelow the minimum degree in the graph [von Luxburg et al.℄, and hene more often towardsthe end of the spetrum. Figure 3.3.1 illustrates this behavior for a toy example4. Theillustrated results beome stronger as the graph approahes a lique with uniform weights.In a Dira vetor, the entry for one point is very di�erent from all other entries. If theweighting 1/λk for the orresponding eigenvetor is not small enough, this di�erene willlead to a large ommute distane of this point with all others, beause the distane is thesum of the di�erenes in the eigenvetor entries (Equation (3.3.2)). As an e�et, this point,�far away� from all others, is likely to end up in a luster by itself.Even though the eigenvetors of the normalized Laplaians do not onverge to Dira fun-tions, the eigenvetors an beome noisy towards the end of the spetrum (see Figure 3.3.1).They are inherently less smooth than the earlier ones, as they represent higher osillations.This noisiness, along with the property of the eigenvetors to beome more similar towardsthe end of the spetrum, ould lead to numerial inauraies. Thus, the impat of thosevetors ould distort the result when omputing a distane as in Equation (3.3.2).If the di�erenes of the eigenvetor entries for eah point are weighted by 1/λk − 1/λn,then the end of the spetrum is less in�uential. The orresponding eigenvetors are onsid-ered less, but the relative impat of the �rst vetors remains the same, as in a subtrativenormalization. In omparison, spetral lustering only takes the �rst K eigenvetors intoaount, but with equal weights.We introdue two variants of the ommute distane, with the new weighting. Thenormalized ommute distane (ND) is based on the non-symmetri normalized Laplaian,
Lrw = I − D−1W . The symmetri normalized Laplaian, Lsym = I − D−1/2WD−1/2, onthe other hand, forms the basis of the symmetri normalized ommute distane (SND):

ND(Xi, Xj) = 2 vol(G)

n∑

k=2

(
1

λk(Lrw)
− 1

λn(Lrw)

)
(vki(Lrw) − vkj(Lrw))

2

SND(Xi, Xj) = 2 vol(G)
n∑

k=2

(
1

λk(Lsym)
− 1

λn(Lsym)

)(
vki(Lsym)√

d(Xi)
− vkj(Lsym)√

d(Xj)

)2

= C(Xi, Xj) −
2 vol(G)

λn(Lsym)

n∑

k=2

(
vki(Lsym)√

d(Xi)
− vkj(Lsym)√

d(Xj)

)2

.4Note that the Dira behavior beomes stronger as the kernel width grows and the graph approahes alique with uniform weights. For RatioCut in suh a lique, however, any ut is equal (RatioCut(f) = 2n),so the lustering ahieved with L is still okay from the perspetive of the Rut objetive. This is, however,not the ase for all objetives. Therefore the example shows that in pratie, the objetive and distaneshould �math�. We will not go into further detail here, though.60
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Figure 3.3.1: Laplaian eigenvalues and -vetors for a toy example: 201 points in 1D drawnfrom 3 Gaussians with means 2, 4, 6 and σ = 0.25. The similarity graph is based on aGaussian kernel of width 1. The �rst panel shows the inverse eigenvalues (�rst olumn) andsome eigenvetors (other olumns, number indiated in title) for the unnormalized Laplaian
L (row 1), Lrw (row 2) and Lsym (row 3). The asterisk indiates when λi > maxj d(Xj), itonly happens for L (here, for i = 5). The eigenvetors of L approah Dira funtions early,when their weight is still high relative to that of the more useful eigenvetors. The spetraof the normalized Laplaians deay faster, and only towards the end of the spetrum thevetors beome noisy. The seond panel shows the distane matries (darker is smaller).With the CD, points are very dissimilar, partiularly the edge points to others. With NDand SND, this is not the ase. The untitled plot is the analogue of ND and SND for L.(Note that the olor sale is not the same in all plots, they are saled separately.)61



The last line shows that the ommute distane is basially modi�ed by the sum of all dif-ferenes, weighted by the inverse of the largest eigenvalue. Theoretially, these equationsshould all be the same [von Luxburg, 2006℄. In pratie, however, toy experiments withMatlab lead to slightly di�erent solutions. This divergene ould be due to numerial prob-lems.Despite the motivation of better balaning, in the experiments (see Setion 3.5.5), NDand SND did not lead to less variane in luster sizes on real data.3.4 ImplementationThe basi desription of nearest neighbor lustering in Setion 3.1 raises the question ofimplementational details that improve omputational e�ieny, together with their impaton the solution.Here, we will outline two aspets. First, an optimization of partitions of a ontratedgraph is omputationally more e�ient than an equivalent optimization on the originalgraph. Seond, the brute-fore searh through Fn an be improved by a branh and boundapproah that we desribe for K =2 lusters and Ncut. For bakground reading on branhand bound methods see Bruso and Stahl [2005℄. Both branh and bound and the ontra-tion guarantee to �nd the optimal solution and thus do not in�uene the result, ontrary tothe hoie of the distane funtion.We will onlude this setion with some heuristis to improve the average runtime. Notethat these heuristis still guarantee an optimal solution.3.4.1 Optimization over super-pointsIn NNC, the andidate funtions are onstant on the neighborhoods. So the neighborhoodstruture opens ways for a ompression of possible solutions. Let us detail and prove onesuh approah.The general representation of a partition f of n data points requires O(n) spae, givingthe label for eah point. Similarly, to evaluate Qn(f) on the graph, we need to look at
n points and all O(n2) edges or similarities. This onstitutes a substantial e�ort in theoptimization, beause we must ompute eah andidate partition and evaluate Qn for it. Thelass Fn of nearest neighbor partitions, however, allows for a more e�ient representationof the partitions and evaluation of Qn, by onsidering a ontrated graph of super-points.Let us state this idea more formally, before we prove that the optimization on theontrated graph is equal to that on the original graph. For an original data set V =
{X1, . . . , Xn} with a similarity funtion s : V 7→ R+, de�ne m super-nodes Zi representingthe neighborhood ells. Super-node Zi ontains all points assigned to the i-th seed. Thesesuper-points may be interpreted as nodes in a ontrated graph, endowed with a super-similarity funtion s̄(Zs, Zt) :=

∑
Xi∈Zs,Xj∈Zt

s(Xi, Xj). If the data is given as a graph, theedge weights de�ne similarities, and an analogous summation over neighborhoods yields edgeweights w̄ in the ontrated graph from the edge weights w. Note that the ontrated graphhas self loops, that is w̄(Zt, Zt) > 0, if there are edges within neighborhoods. Eah partition
f ∈ Fn an then be represented as an extension of a funtion f̄ : {Z1, . . . , Zm} 7→ R+ onthe ontrated set, with f(Xi) = f̄(Zs) if Xi belongs to the s-th ell. So the extension to
V onsists of labeling eah Xi by the label f̄(Zs) of the super-point Zs orresponding to itsneighborhood. Similarly to the similarities, Qn an be de�ned on the partitions f̄ of the62



ontration, suh as
Ncut(f̄) =

K∑

ℓ=1

w̄(Cℓ, V \Cℓ)

vol(Cℓ)
, (3.4.1)with vol(Cℓ) =

∑

Zi,∈Cℓ,1≤j≤m

w̄(Zi, Zj).To ompute Ncut, we an replae the n×n weight or similarity matrix of the original graphby an m×m matrix of w̄ for the super-points. Apart from memory savings, the ost of thesummation then drops from O(n) to O(m) for eah partition.After a reformulation, the WSS objetive an as well be omputed in terms of super-points and a preomputable onstant (�rst term).
WSS(f̄) =

1

n

∑

Xi∈V

X⊤
i Xi −

1

n

K∑

ℓ=1

1∑
Zu∈Cℓ

|Zu|
∑

Zs,Zt∈Cℓ

Z̃⊤
s Z̃t, (3.4.2)with Z̃s =

∑

Xi∈Zs

Xi,

|Zs| =
∑

Xi∈Zs

1The following proposition justi�es the replaement of Ncut(f) and WSS(f) by Ncut(f̄)and WSS(f̄) in the optimization.Proposition 5 (Equivalene of optimization on nodes and super-points). Let the super-nodes Zi and the weights w̄ of the ontrated graph be de�ned as above. Assume that f :
V 7→ R+ is a funtion on the original verties whih is onstant within eah neighborhood
Zi. Denote by f̄ : {Z1, . . . , Zm} 7→ R+ the orresponding partition of the super-nodes.Furthermore, let Ncut(f) and WSS(f) be the quality funtion on the original graph, and
Ncut(f̄) and WSS(f̄) their orrespondents on the ontration, as de�ned in Equations (3.4.1)and (3.4.2).Then Ncut(f) = Ncut(f̄) and WSS(f) = WSS(f̄).Proof. We �rst prove equivalene for Ncut, then for WSS.It is easy to see that the sums of weights between neighborhoods su�e to exatlyompute the Ncut on the full graph for lusters C1 to CK . The original riterion is

Ncut(f) =
k∑

ℓ=1

w(Cℓ, V \Cℓ)

vol(Cℓ)
.The numerators are

w(Cℓ, V \Cℓ) =
∑

Xi∈Cℓ

∑

Xj /∈Cℓ

w(Xi, Xj)

=
∑

Zs⊆Cℓ

∑

Xi∈Zs

∑

Zt*Cℓ

∑

Xj∈Zt

w(Xi, Xj)

=
∑

Zs⊆Cℓ

∑

Zt*Cℓ

w̄(Zs, Zt)

=
∑

Zs⊆Cℓ

w̄(Zs, V \Cℓ) = w̄(Cℓ, V \Cℓ). (3.4.3)63



Analogously, the summation for the denominator an be rewritten in terms of the diagonalelements of the m × m matrix of w̄:
vol(Cℓ) =

∑

Xi∈Cℓ,Xj∈V

w(Xi, Xj)

=
∑

Zs∈Cℓ,1≤t≤m

∑

Xi∈Zs,Xj∈Zt

w(Xi, Xj)

=
∑

Zs∈Cℓ,1≤t≤m

w̄(Zs, Zt). (3.4.4)Reformulations (3.4.3) and (3.4.4) imply that w(Cℓ,V \Cℓ)
vol(Cℓ)

= w̄(Cℓ,V \Cℓ)

vol(Cℓ)
for all ℓ and thus

Ncut(f) = Ncut(f̄).In a similar manner, we an restateWSS for the ontrated points. Let cℓ =
(∑

Xi∈Cℓ
Xi

)
/|Cℓ|be the mean of luster Cℓ, and n = |V |. Then

WSS(f) =
1

n

K∑

ℓ=1

∑

Xi∈Cℓ

‖Xi − cℓ‖2

=
1

n

K∑

ℓ=1

∑

Xi∈Cℓ


 1

|Cℓ|
∑

Xj∈Cℓ

(Xi − Xj)




⊤(
1

|Cℓ|
∑

Xk∈Cℓ

(Xi − Xk)

)

=
1

n


 ∑

Xi∈V

X⊤
i Xi −

K∑

ℓ=1

1

|Cℓ|
∑

Xi,Xj∈Cℓ

X⊤
i Xj




=
1

n

∑

Xi∈V

X⊤
i Xi −

1

n

K∑

ℓ=1

1

|Cℓ|
∑

Zs,Zt∈Cℓ

∑

Xi∈Zs

∑

Xj∈Zt

X⊤
i Xj

=
1

n

∑

Xi∈V

X⊤
i Xi −

1

n

K∑

ℓ=1

1

|Cℓ|
∑

Zs,Zt∈Cℓ

(
∑

Xi∈Zs

Xi

)⊤

 ∑

Xj∈Zt

Xj




=
1

n

∑

Xi∈V

X⊤
i Xi −

1

n

K∑

ℓ=1

1∑
Zu∈Cℓ

|Zu|
∑

Zs,Zt∈Cℓ

Z̃⊤
s Z̃t

= WSS(f̄).Thus, it su�es to preompute the sum of the squared norms of the points as well as thedot produts of the sums Z̃s =
∑

Xi∈Zs
Xi.3.4.2 A branh and bound algorithmNot only the omputation of Qn, but also the searh through Fn an be sped up on average.Even though, for m = O(log n), all possible O(2log n) partitions an be enumerated inpolynomial time, more e�ient strategies exist. For better average-ase runtime, we revertto a branh and bound approah, whih is still guaranteed to return the optimal solution.We will prove this laim for our algorithm after a desription of it. In the following, weoperate on the ontrated graph and assume to searh for K = 2 lusters.64



The general idea of branh and bound is as follows. We represent the solution spaeas a tree and assume that we know an upper bound θu on the objetive funtion value ofthe optimal solution (for example, θu ould be the value of a partiular initial andidatelustering f̄0). Then we desend in the tree, and at eah vertex deide whether the urrentbranh of the tree might ontain a better solution than the one given by the upper bound
θu. To this end, we need to ompute a lower bound θl on the objetive funtion values of allsolutions represented in the urrent branh of the tree. If θl > θu we know that the urrentbranh only ontains solutions whih are worse than the one we already have, and we anprune this branh, saving the time to inspet it any further.Let us look at the example of solving NNC(Ncut) for two lusters C+ and C−, withrespetive labels +1 and −1. Figure 3.4.2 outlines the reursive algorithm in pseudoode.Initially, Z1, in a luster by itself, is labeled by +1, and all other nodes by −1. In eah step,the two branhes onsist of �xing the label of the next super-point to be positive or remainnegative. For K lusters, we will then have K branhes to hoose from. Before we proveorretness of our algorithm, we go into more detail about the branhing strategies.

A B
f +1 -1 +1 +1 -1 -1 -1 -1 -1 -1

↑
iFigure 3.4.1: Illustration of the sets A, B and f in reursion i, in whih the assignment of

Zi is determined. The �xed subsets are A− = {Z2} and A+ = {Z1, Z3, Z4}.Assume we have already determined the labels l1, . . . , li−1∈{±1} of the �rst i−1 super-points. For those points we introdue the set A = {Z1, . . . , Zi−1} with subsets A− :=
{Zj | j < i, lj = −1} and A+ := {Zj | j < i, lj = +1}. The remaining points formset B = {Zi, . . . , Zm} so that V = A ∪ B. All points in B get the label −1 by default.In reursion level i, we deide about moving Zi to luster C+. Figure 3.4.1 shematiallyillustrates the sets.The branh and bound strategy instruts to investigate whether the movement of one ormore points from B to the +1 luster has the potential to improve the Ncut. More formally,the question is whether the �branh� of lusterings that agree on the urrent �xed labels
l1, . . . , li−1 on A ould ontain a solution whih is better than any previously onsideredpartition.We try to answer this question by exlusions. If we annot exlude a better solutionin the urrent branh, we explore it further. We determine exlusions in two steps (Part3. in Figure 3.4.2), a diret and an indiret one. First, we determine if an improvementof the urrent Ncut is possible at all by relabeling any node in B, and keeping labels 1 to
i − 1 �xed (Step I). If our onditions are not satis�ed, the urrent branh annot lead toany improvement. Their satisfation, however, does not imply that the branh does indeedontain a better solution. Thus, in Step II, we ompute a lower bound θl on the solutionsin the branh and ompare it to the urrent upper bound θu.Both steps onsider the two fators of the quality funtion separately, namely the �utterm� and the �volume term� in the produt Ncut(f) = cut(C+, C−)·(1/ vol(C+)+1/ vol(C−)).Step I onsists of one ondition for the ut and one for the volume term, and in Step II webound the ut and volume terms separately. Hene, we struture either step into a ut (I.,II.) and a volume (I.v, II.v) part. 65



Branh and bound algorithm for Nut: f∗ = bbnut(S̄, i, f, θu){1. Set g := f; set A−, A+, and B as desribed in the text2. // Deal with speial ases:� If i = m and A− = ∅ then return f.� If i = m and A− 6= ∅:� Set gi = +1.� If Ncut(g) < Ncut(f) return g, else return f.3. // Pruning:� If maxj≥i{s̄(j,A
+)− s̄(j,A−)} ≤ 0 (I.), and vol(A+) > vol(A∪B)/2 (I.v),then return f.� Compute lower bound θl as desribed in the text.� If θl ≥ θu then return f.4. // If no pruning possible, reursively all bbnut:� Set gi = +1, θ′

u := min{Ncut(g), θu}, all g′ := bbnut(S̄, g, i + 1, θ′
u)� Set gi = −1, θ′′

u := min{Ncut(g), θ′
u}, all g′′ := bbnut(S̄, g, i + 1, θ′′

u)� If Ncut(g′) ≤ Ncut(g′′) then return g′, else return g′′. }Figure 3.4.2: Branh and bound algorithm for solving NNC(Ncut) for K = 2. The algorithmis initially alled with the super-similarity matrix S̄, i = 2, f = (+1,−1,−1, ...,−1), and θuthe Nut value of f .
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Figure 3.4.3: The vol-ume term 1/x+1/(1−
x) for x ∈ (0, 1).

Let us take a loser look at the onditions and bounds, startingwith I. and I.v. The riteria of Step I are very simple: assigningat least one point in B to C+ an only lead to an improvement ifthis either dereases the ut term or the volume term of Ncut (orboth).I. Neessary for an improvement of the ut term is that at leastone point in B is more attahed to the nodes in A+ than tothe nodes in A− ∪ B labeled by −1. More formally, it mustbe that maxj≥i{s̄(Zj ,A+) − s̄(Zj ,A−)} ≥ 0I.v The volume term is minimized if both lusters are equal involume, vol(C+) = vol(C−) = vol(V )/2, and inreases as thesizes beome more unbalaned (Figure 3.4.3). Thus, if C+ already takes up morethan half the volume, vol(C+) = vol(A+) > vol(V )/2, an additional node will furtherimpair the volume balane and inrease the term. Therefore, the volume riterion is
vol(A+) ≤ vol(V )/2.If neither ondition is satis�ed, we retrat. Otherwise, we proeed to Step II.In Step II, we ompute a lower bound θl and ompare it to an upper bound θu on theoptimal Nut value, namely to the Nut value of the best funtion we have seen so far. If

θl ≥ θu, then no improvement is possible by any lustering in the urrent branh of thetree, and we retrat. To ompute θl, assume we assign a non-empty set B+ ⊂ B to luster66



C+, and keep the labels −1 in remaining set B− = B \ B+. Let α(C+, C−) = cut(C+, C−)and β(C+, C−) = 1/ vol(C+)+1/ vol(C−) denote the ut and volume terms, respetively. Webound them separately by α′ and β′ to set θl = α′β′.II. The ut term onsists of a �xed part, the ut edges between A+ and A−, and avariable part, the ut edges adjaent to nodes in B. To bound α from below, onsidertwo subases. If A− = ∅, at least one node from B must remain in C−, and the �xedpart is zero. Hene, the ut is at least as big as the minimum attahment of any nodein B to A+. Otherwise, any nonempty subset of B may be moved, and the ut onsistsat least of the �xed part plus the minimum weight between a node in B and A−. Moreformally, using the onvention s̄(A, ∅) = 0, set
α′ =

{
s̄(A+,A−) + minj≥i s̄(Zj ,A−) if A− 6= ∅
minj≥i s̄(Zj ,A+) otherwise.II.v As stated above, β(C+, C−) is minimal if vol(C+) = vol(C−) = vol(V )/2. The volumeterm an only derease to this value of 4/ vol(V ) if vol(A+) ≤ vol(V )/2, beause theaddition B+ to C+ = A+ ∪ B+ is nonempty. If A+ already overs half the entirevolume, then an inrease is unavoidable. This rise is minimal if the node in B withthe smallest degree is moved to C+, beause it leads to the least further deteriorationof the volume balane. In formal terms, set

β′ =

{
4/ vol(V ) if vol(A+) ≤ vol(V )/2

minj≥i {1/ vol(A+ ∪ Zj) + 1/ vol(A− ∪ B \ Zj)} otherwise.If θl ≥ θu, we retrat, otherwise we reursively investigate the sub-branhes of setting
li = +1 and li = −1, and keep θu updated. This reursion is Step 4. in Figure 3.4.2. Someheuristis an improve the average runtime, as outlined in Subsetion 3.4.3.The omplete algorithm returns a global minimizer of Ncut, as the next setion shows.CorretnessLemma 6 (Corretness of bbnut). Let the labels of A(i) = A+(i)∪A−(i) = {Z1, . . . , Zi−1}be �xed, and assume the input θu is a strit upper bound on the Ncut values of the partitionsin onformity with the labels on A. Then the algorithm bbnut returns an assignment ofthe verties B(i) = {Zi, Zi+1, . . . , Zm} that optimizes the Ncut riterion, with �xed labels on
A(i).Proof. We prove Lemma 6 by indution on the number nB = |B(i)| of nodes to assign. A�nal assignment is represented by C+ = A+ ∪B+ and C− = A− ∪B−. For notational issues,let bbncut(A−(i),A+(i),B(i)) denote the solution returned by bbnut for inputs A+(i),
A−(i) and B(i), where verties starting from Zi were assigned to a luster.Base Case. Assume i = m, so B(m) = {Zm} and nB = 1. If A−(i) = ∅, then the bestassignment of Zm is to luster C−, that is B−(i) = {Zm}. Otherwise C− = A−(i)∪B−(i) = ∅will make the Nut value in�nity. Hene the algorithm orretly sets B−(i) = {Zm}.If A−(i) 6= ∅, then the best assignment is the one of B−(i) = {Zm} and B+(i) = {Zm}minimizing the Nut. The former has already been omputed and orresponds to the urrentut value. So the algorithm returns the orret assignment and is thus orret for nB = 1.67



Indutive Step. Now, assuming that bbnut is orret for nB, let us see that bbnutis orret for nB + 1 as well (provided m > nB, otherwise we are �nished anyway). Let
i = m − nB, so we know that bbnut gives a orret solution for all i′ with m ≥ i′ > i.We will onsider the possibilities of failure one by one. First, we show that if we reahthe reursion (Step 4), then the orret solution is returned. Then we look at the pruningriteria in Step 3 and show that they are only met if no improvement is possible in theurrent branh. Hene we always reah the reursion if the urrent branh ontains a betterpartition. As to pruning, we �rst investigate the diret riteria I. and I.v, and then theomponents α′ (II.) and β′ (II.v) of the lower bound.Assume that no pruning riterion is met and we are in Step 4. The assignment of nodesup to Zi−1 is �xed. The best solution is then the best of those assignments in onformitywith either (A−(i)∪{Zi},A+(i)) or (A−(i),A+(i)∪{Zi}). Thus, take the better of the bestsolution for eah suh sub-assignment, that means of bbnut(A−(i)∪{Zi},A+(i),B(i+1))and bbnut(A−(i),A+(i)∪{Zi},B(i+1)). The reursive alls return the orret solutions bythe orretness for i′ > i. Hene, the orret solution is returned if the branhing riterionis ful�lled in Step 4.If the urrent assignment C− = A−(i) ∪ B(i), C+ = A+(i) is the optimal solution (i.e.
B+(i) = ∅), it will either be returned in the reursion (B−(i) = B(i), by the orretness for
nB), or by skipping the reursion.So only one possibility of failure remains: Assume the best solution fn is C− = A−(i) ∪
B−

∗ , C+ = A+(i) ∪ B+
∗ with B+

∗ 6= ∅, but the reursion is skipped beause some pruningriterion is met in Step 3. That means either both I. and I.v are not satis�ed, or θl ≥ θu, so
α′ or β′ is no lower bound. We demonstrate that this assumption leads to a ontraditionfor both I and II. Let θu be the Nut value of the best solution enountered so far, so
Ncut(fn) = Ncut(A−(i) ∪ B−

∗ ,A+(i) ∪ B+
∗ ) < θu. Denote by α∗ and β∗ the ut and volumeterms for fn, respetively. The urrent Nut is Ncut(A+(i),A−(i) ∪ B(i)) > Ncut(fn). Inthe following treatments, we always onsider the sets for i, so we leave out this index fornotational simpliity.Diret riteria (I) Assume that both I. and I.v are not ful�lled.I. Condition I. implies that s̄(A−, Zj) > s̄(A+, Zj) for all Zj ∈ B, so

α∗ = s̄(A+,A−) + s̄(A+,B−
∗ ) + s̄(A−,B+

∗ ) + s̄(B−
∗ ,B+

∗ )

> s̄(A+,A−) + s̄(A+,B−
∗ ) + s̄(A+,B+

∗ )

= α(A+,A− ∪ B). (3.4.5)The last term is the urrent ut term.I.v From I.v, we know that vol(A+) > vol(V )/2, so the addition of any node to A+an only inrease the urrent volume term. Hene, β∗ is greater than the urrent
β:

β∗ > β(A+,A− ∪ B). (3.4.6)Equations (3.4.5) and (3.4.6) imply that
Ncut(fn) = α∗β∗ > α(A+,A− ∪ B) · β(A+,A− ∪ B),a ontradition to fn's optimality.Lower bound (II) The seond possibility is that θl ≥ θu > Ncut(fn), so the lower boundis inorret. By looking �rst at α′ and then at β′, we show that this ontradits theoptimality of fn. 68



II. For the ut term, we distinguish two subases, (i) C− does not have a �xedmember yet (A− = ∅), or (ii) some points in A are labeled −1. If A− = ∅, atleast one node in B must remain in C−. So s̄(A+, B−
∗ ) ≥ minj≥i s̄(A+, Zj) andit is

α′ = s̄(A+,A−) + min
Zj∈B

s̄(A+, Zj)

≤ s̄(A+,A−) + s̄(A+,B−
∗ ) + s̄(B+

∗ ,A−) + s̄(B+
∗ ,B−

∗ ) = α∗.If A− 6= ∅, then any nonempty subset of B may be moved to C−, and hene theut value inludes at least the edges from this subset to the �xed A+, that is
s̄(B+

∗ ,A−) ≥ minj≥i s̄(Zj ,A−). This implies
α′ = s̄(A+,A−) + min

Zj∈B
s̄(Zj ,A−)

≤ s̄(A+,A−) + s̄(A+,B−
∗ ) + s̄(B+

∗ ,A−) + s̄(B+
∗ ,B−

∗ ) = α∗.It follows that in any ase, we have α′ ≤ α∗, so α′ is indeed a lower bound.II.v So only the volume term remains. If vol(A) ≤ vol(V )/2, then β′ is set to theminimum possible 4/ vol(V ), and thus β′ ≤ β∗. Otherwise
β′ = min

j≥i

{
(vol(A+) + d(Zj))

−1 + (vol(V ) − vol(A+) − d(Zj))
−1
}

≤ (vol(A+) + vol(B+
∗ ))−1 + (vol(V ) − (vol(A+) + vol(B+

∗ )))−1 = β∗beause h(x) = 1/x+1/(1−x) is stritly monotonially inreasing on [0.5, 1] and
B+

∗ 6= ∅. So in any ase β′ ≤ β∗.The assumption θu ≤ θl together with the onlusions α′ ≤ α∗ and β′ ≤ β∗ impliesthat
θu ≤ θl = α′β′ ≤ α∗β∗ = Ncut(fn),a ontradition to fn being better than the best solution enountered so far.In summary, both the violation of both diret riteria and the inorretness of θl lead to aontradition. So, if fn is optimal, we will reah the reursion in Step 4.This means that if the optimal solution has sub-assignments (A−(i),A+(i)) and B+

∗ 6= ∅,the reursion is taken and the orret assignment returned. This argument ompletes theproof of orretness for nB + 1, implying orretness for all nB < m by indution.Corollary 7. Calling bbnut for i = 2 with A+ = {Z1} and θu being the Ncut value forthe partition C+ = {Z1}, C− = B(2) solves Ncut for the entire graph, {Z1, . . . Zm}.Proof. The orollary follows from Lemma 6 and the fat that �xing the label of Z1 doesnot �x the partition in any way: There are two instantiations of the optimal partition by amere swap of labels.3.4.3 HeuristisThe branh and bound strategy from above may be further improved by a number of heuris-tis. Note that both branh and bound as well as the following heuristis still guaranteea orret solution. In turn, they annot in�uene the worst-ase runtime. Nevertheless,69



the average runtime is sped up, as we will demonstrate below. Let us �rst motivate someheuristis and show their in�uene.Re�etions about heuristis raise the question for fators determining the runtime. Theworst ase, that we annot exlude ompletely, is the enumeration of all funtions in Fn.However, in average, �nier� ases, branh and bound helps to exlude subsets of Fn viapruning. So the earlier the pruning happens, the larger the subset that is exluded and thesmaller the set of andidate funtions remaining. Thus, we would like to identify a �useless�branh as soon as possible. Pruning is determined by two riteria, the diret onditions I.and I.v, and the bounds θl and θu, that we hene try to satisfy soon:I. The ut riterion is satis�ed if the nodes in B are more attahed to A− than to A+.This is only possible if A− has a su�ient size, or if all nodes in B that are loselyattahed to A− are moved to A as soon as possible.I.v The volume riterion requires for pruning that vol(A) ≥ vol(V )/2, hene A shouldgrow in volume early.
θu As the bound riterion is θl ≥ θu, a tight upper bound exludes more branhes. Hene,try to ahieve good quality values early.II. The ut bound α′ involves both A+ and A−, so it will be more disriminative if both

A+ and A− have signi�ant size or, better, volume (as volume is related to edges).II.v The volume bound is only disriminative if vol(A) ≥ vol(V )/2, so A should grow involume early.The question is how to integrate as many of those demands as possible. Many require that
A or its subsets should grow fast, in volume or size. The number of nodes in A is the levelof the reursion, so it is not due to hange. The volume, however, grows fastest if we �x thelabel of the nodes with highest degree �rst. Both A+ and A− simultaneously grow earlyif the labels in A are approximately uniformly distributed over the volume. If the nodesare ordered non-inreasingly by degree, then this ondition is satis�ed if the nodes in A arelabeled roughly alternately. In onsequene, the setsA+ andA− are approximately balanedin volume in most subsets {Z1, . . . Zi−1} for varying reursion levels i. As a side e�et, thisstrategy may improve the lower bound θu with Nut, as the volume balane is favored inthe subset A. If B is large in volume, this will of ourse not be the ase. Diminishing thesize of A− for better balaning (by number), however, ontradits the requirement of I..But if high-degree nodes are labeled early, then B will be as small as possible in volume,thus in�uening the balane as little as possible, while most other demands are met.So how an we realize this balaned labeling by degree? The algorithm itself leaves roomfor hanges in various plaes:1. in the implementation: order of nodes, initial θu2. in the order of the pruning riteria3. in the order of the reursion in Step 4: branh �rst into gi = −1 or gi = +1; thisdetermines the labels in A in the earliest reursions4. reorder nodes in B at lower levels of the reursion (as it is quite ompliated to keeptrak of the reorderings throughout reursions, we did not implement this possibility).70



The quik growth of A may be in�uened in the implementation already. As we labelthe nodes in asending order by their number, we order them by degree, starting with theheaviest node. Thus, the higher the degree, the earlier a node will be moved to A.The order of the reursions in�uenes the �rst labelings in A. In onseutive reursionlevels, we alternately branh into the −1 and +1 branh �rst, that means one set gi = +1�rst and in the next level gi+1 = −1 �rst. This means that in the �rst path we take wealternately assign nodes to luster C− and C+ for a rough balaning. The better the �rstpartitions found, the tighter will be the the upper bound in early reursions. The alternationgoes hand in hand with the reordering of nodes by degree. Hopefully, this leads to earlytight upper bounds and disriminative pruning onditions.The diret pruning onditions are simpler to ompute than the lower bound, and theyare de�nitive. Hene it makes sense to test the improvement onditions I. and I.v beforeomputing θl.The initial upper bound should be as tight as possible, but heap to ompute. One suhpossibility is the minimum possible Nut if one luster onsists of only one node. Withoutself-loops on any node (w(Xi, Xi) = 0 for all i), this value is
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+ 1.The fration is minimized by the node Xi with the lowest de-gree, as Figure 3.4.4 illustrates. Thus, it only needs to beevaluated for the �rst node and the node with minimum de-gree. In view of this degree aspet, the heuristi start nodewith highest degree will de�nitely not be in a luster by itself.If, by hane, θu already orresponds to the best lusterassignment fn, and this is not the separation of X1 we startwith, then the algorithm might prune the best searh path,beause it only follows a path if an improvement to θu is pos-sible. The algorithm will however still terminate soon, beausea good θu from the beginning prunes many searh paths immediately. We an then simplyompare the Nut value of the returned solution to θu. If it is larger, then we know thatthe assignment orresponding to the initial θu was the optimal one, that means one lusteronly onsists of a single node.So how do the heuristis behave in pratie, as the number n of nodes or the number kof neighbors in the k-nearest neighbor graph hanges? Figure 3.4.5 illustrates the runtimewithout branh and bound (`all'), ompared to branh and bound with the alternatingheuristi (BB) and with both alternation and sorted nodes (BBsort). The branh andbound algorithm always tested ondition I. and I.v before onsidering θl, and the initialupper bound was always set to utting o� the node with the lowest degree. All the �guresrefer to the mere optimization without any redution of the funtion lass, so 2n partitionsare to onsider.The runtime (Figure 3.4.5) as well as the number of evaluations of Nut and the numberof reursions (Figure 3.4.6) is drastially redued by branh and bound, and further bythe sorting heuristi. The runtime inreases with n but not muh with k, as Figure 3.4.5shows. The number k of neighbors in the graph a�ets the summation in evaluating Nut.The inrease in reursions in Figure 3.4.7 may be due to a later satisfation of the pruningriteria with higher k. If eah node has more onnetions to neighbors, then the movementof one node may be more in�uential to the ut quality. The addition of neighbors makes71



more di�erene for smaller k, when the additional neighbors are lose enough to make edgesof signi�ant weight.
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Figure 3.4.5: Runtime hanges, for inreasing n with k = 5 neighbors (left), or inreasing kwith n = 16 (right).
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Figure 3.4.6: Number of alls to Nut (left) and bbnut (right) for inreasing n with k = 5.In summary, the heuristis improve the average runtime, partiularly with respet to thenumber of nodes.3.5 ExperimentsAn important feature of nearest neighbor lustering is its statistial onsisteny: for large
n, it reveals an approximately orret lustering. Its behavior on smaller samples is thesubjet of the �rst set of experiments. In Setion 3.5.3 we will ompare the results of NNCto results from heuristis designed to diretly optimize the given objetive funtion Qn.Sine generalization is a key aspet in Learning Theory, we do not only ompare the valueof Qn of the solutions but also their generalizability in Setion 3.5.4.Even though the di�erenes may be small in the limit for large samples, the hoie of thedistane an in�uene the performane of nearest neighbor lustering for smaller n. Henein Setion 3.5.5 we ompare results for di�erent distane funtions.72
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Figure 3.4.7: Number of alls to Nut (left) and bbnut (right) for inreasing k with n = 16.A further impat on the results may be the number and seletion of seed points. Wetake a loser look at seed-related issues in Setion 3.5.6.3.5.1 Constrution of graphsIn the experiments, we use arti�ial and real data. The arti�ial data usually onsists ofpoints sampled from a mixture of Gaussians in Rd.The real data sets will be desribed in the following. If the data is not already given asa weighted or unweighted graph, a k-nearest neighbor graph is onstruted by onnetingeah node to its k losest neighbors (f. Setion 1.2.2). The weight of edge (Xi, Xj) is givenby the Gaussian kernel (see Eq. (1.2.2)). In general, we use undireted graphs, that meansif edge (Xi, Xj) exists, then the graph also ontains edge (Xj , Xi) with equal weight. If theoriginal graph was direted, we added a reiproal edge of equal weight for eah edge in thegraph.3.5.2 Real data setsWe olleted graphs from several soures about a variety of data. Here we desribe thesoure of the data in the experiments. If the resulting graphs were not onneted, we usedthe largest onneted omponent. Table 3.1 shows the number of nodes and edges for eahgraph.COSIN biologial dataThe COSIN website [osin℄ provides weighted and unweighted networks from several soures.We use four suh biologial networks.The helio data set is a protein-protein interation network from Heliobater pylori andthus unweighted. The underlying data from 2000 and 2001 stems from the Database ofInterating Proteins [Database of Interating Proteins℄.The other protein-protein interation network, eoli.interation, refers to E. oli. Thenodes denote proteins, and the edges on�rmed interations. The data was reated in 2005in the Emili Lab [Butland et al., 2005℄.Metaboli pathways in E. oli are desribed by eoli.metaboli. Here, the nodes aremetabolites. Unweighted edges between nodes denote involvement in the same atalyti73



reation. The database was developed by Ma and Zheng [2003℄ based on the Kyoto Eny-lopedia of Genes and Genomes (KEGG).Another protein-related network refers to protein folding. It desribes the onformationspae of a 20 residue antiparallel beta-sheet peptide. The onformations were sampled fromsimulations of moleular dynamis. Snapshots along the trajetory are grouped into nodesby seondary struture. The edges refer to transitions between strutures. The network onlyontains onformations that our at least 20 times in the simulation. The graph beta3s isa redued version of this onformation network by Rao and Ca�ish [2004℄.Other protein interationsProtein interations in Saaromyes erevisiae are ontained in the protein network yeast-ProtInt from Barabási. The data is further desribed in Jeong et al. [2001℄.Other interation networks from Saaromyes erevisiae were used in [Tsuda et al.,2005℄. We downloaded four of their networks and used the largest omponent of eah. Inontrast to the desription in the paper, all graphs are weighted. The �rst, protNW1, isbased on the Pfam domain struture. A protein is represented by a 4950-dimensional binaryvetor, in whih eah bit indiates the presene or absene of one Pfam domain. An edge isreated if the inner produt of the two adjaent node vetors exeeds 0.06. The edge weightis the inner produt. The o-partiipation of the node proteins in omplexes, determined bytandem a�liation puri�ation, is ontained in protNW2. Two nodes are onneted if thereis a bait-prey relationship between them. Physial protein-protein interations are overedby protNW3. The last network, protNW4, desribes geneti interation of the proteins. Adetailed desription of the original data an be found in Lankriet et al. [2004℄.Miroarray DataThe ellyle network is based on a miroarray data set from Spellman et al. [1998℄. Thestudy investigates genes whose expression levels vary periodially with the ell yle. Weuse their seletion of 800 genes that meet the authors' riterion for ell yle regulation. Ofthose genes, we deleted the three with the most missing values (where more than half theolumn entries were missing). One gene in the list was not in the data set. The data waspreproessed as desribed in the paper, referring to Eisen et al. [1998℄. Ignoring the missingvalues, the olumns (features) were standardized and, as a measure of similarity, the innerprodut (orrelation) for all genes omputed, again ignoring the missing values. From theresulting orrelation matrix C, the Eulidean distanes were taken as √2 − 2C (entry-wisesquare root). The rest of the proess was the same as for the other data sets. A modi�edversion of Matlab's k-means algorithm used the Eulidean distanes derived from C andtook a random seletion of the data points as initial enters.Psyhophysis: leaf onfusion matriesThe leaf onfusion matrix C, kindly provided by Frank Jäkel (unpublished data), is rathersmall and the result of a psyhophysis experiment. The subjet had to deide whetherthe presented leaf was leaf i or not. Entry C(i, j) represents the number of times thesubjet identi�ed leaf j as leaf i divided by the number of times leaf j was presented. Wesymmetrized this matrix by setting W = C+C′, and either set the diagonal to zero (onfus)or allow self loops (onfusN ). 74



COSIN AS Internet graphsThe AS- graphs from COSIN [osin℄ represent the �Autonomous Systems topology of theInternet�. The nodes are autonomous systems, and an edge indiates a physial onnetionbetween two systems. The underlying BGP data has been olleted by the University ofOregon Route Views Projet, and is available at the �Global ISP interonnetivity by ASnumber� webpage [Measurement and Team℄ of the National Laboratory of Applied NetworkResearh. Self loops and parallel edges were removed in the graphs at COSIN, whih are inLEDA format. We use the smallest graphs in the olletion, from 1997/11/08, 1998/04/02,1998/07/03, 1998/10/02, 1999/01/14 and 1999/04/02.Data from Newman's olletionA power network, oauthorships and politial blogs are desribed by three graphs fromMark Newman's olletion [Newman℄. The topology of the Western States Power Grid ofthe United States forms the unweighted and undireted power graph [Watts and Strogatz,1998℄.The netsiene graph represents oauthorship of sientists working on network theoryand experiments. It was ompiled from bibliographies of two review artiles, with somereferenes added by hand [Newman, 2006℄.Politial blogs from the 2004 presidential eletion in the United States form the basis forthe polblogs network by Adami and Glane [2005℄. Links between the blogs were extratedfrom a rawl of the front page of the blogs and the posts. The study aimed to investigateinterations between liberal and onservative blogs as well as the strutures of the twoommunities.EmailsThe email network from Arenas represents the email interhanges between members of theUniversity Rovira i Virgili in Tarragona [Guimera et al., 2003℄.UCI data setsIn ontrast to the graphs desribed so far (exept ellyle), the UCI data sets are vetorial,giving features or oordinates for eah node. For a graph representation, we onstruted
k-nearest neighbor graphs from this data, using Eulidean distanes. The breastaner,diabetis, german, heart, image, splie and thyroid data sets are provided at [Rätsh℄. Thedata was used like that in [Mika et al., 1999℄ and [Rätsh et al., 2001℄.In addition, we downloaded data diretly from the UCI repository [ui℄. For the breast-aner-wisonsin data (bw), points with missing values were removed. We also use theBUPA liver-disorders (bupa), ionosphere and pima-indians-diabetes (pima) sets. In eahdata set, we standardized the features.Note that these data are benhmark data for lassi�ation. They do not neessarily havea lear struture for lustering whih might otherwise be the intuitive �best� solution.USPS handwritten digitsThe United States Postal Servie provides a database of handwritten digits from zero tonine. For experiments with two lusters, we onstrut graphs from pairs of two onseutivedigits: zero and one, two and three, four and �ve, six and seven and eight and nine. Again,the features were standardized. 75



data n |E|eoli.interation 230 695 ueoli.metaboli 563 709 uhelio 710 1,450 ubeta3s 1,287 23,948 wyeastProtInt 1,458 1,948 uprotNW1 641 9,791 wprotNW2 970 1,819 wprotNW3 944 1,536 wprotNW4 499 757 wellyle 797 8,990 (k = 7) wonfus 26 588 wonfusN 26 614 wAS-19971108 3,015 5,156 uAS-19980402 3,522 6,324 uAS-19980703 3,797 6,936 uAS-19981002 4,180 7,768 uAS-19990114 4,517 8,376 uAS-19990402 4,885 9,276 unetsiene 379 914 wpolblogs 1,222 16,714 upower 4,941 6,594 uemail 1,133 5,451 ubreastaner 257 2,012 (k = 6) wdiabetis 768 7,626 (k = 7) wgerman 1,000 10,360 (k = 7) wheart 270 2,342 (k = 7) wimage 2,086 22,122 (k = 8) wsplie 2,990 47,390 (k = 9) wthyroid 215 1,752 (k = 6) wbw 683 7,220 (k = 7) wbupa 345 2,968 (k = 6) wionosphere 351 3,492 (k = 6) wpima 768 7,626 (k = 7) wUSPS 0 vs. 1 2,822 33,588 (k = 8) wUSPS 2 vs. 3 1,753 20,558 (k = 8) wUSPS 4 vs. 5 1,568 18,870 (k = 8) wUSPS 6 vs. 7 1,626 19,046 (k = 8) wUSPS 8 vs. 9 1,529 18,660 (k = 8) wTable 3.1: Number of nodes and edges in the graphs we used in the experiments. The letter`u' indiates that the graph is unweighted, `w' means `weighted'.
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3.5.3 Performane on the training setWe �rst ompare the performane of Nearest Neighbor lustering, on given graphs or k-nearest neighbor graphs from subsets of real data, with that of an algorithm designed todiretly optimize the quality funtion Qn. As to objetive funtions, we onentrate onNut and the within-sum-of-squares, WSS. The former is diretly minimized by normalizedspetral lustering (SC, for an overview of spetral lustering see e.g. [von Luxburg, 2006℄).The latter riterion is the objetive of the k-means algorithm.Note that the restrition of the k-means algorithm to oordinate data makes it inap-propriate for diret network data. Hene we only use WSS on the numeri vetorial datasets.Here, we fous on �nding two lusters from neighborhoods around m = lnn randomly(uniformly) hosen seed points. For the neighborhoods, a node is assigned to its losest seedby ommute distane on the graph (ommute distane was omputed with the unnormalizedLaplaian aording to the matrix formula, Equation 3.3.2). Eah algorithm was run with
r = 50 initializations. For NNC, �initialization� means the hoie of a set of seeds, whereasfor k-means it is the hoie of the initial luster enters. In spetral lustering (SC), themeans in the post-proessing step involving k-means may be hosen anew. Of those r runs,the solution with the lowest objetive is hosen.Network data network NNC SCCD HT ND SNDhelio 0.159 0.183 0.167 0.167 0.159eoli.interation 0.060 0.112 0.060 0.060 0.060eoli.metaboli 0.029 0.029 0.029 0.029 0.036beta3s 0.003 0.003 0.003 0.003 0.003yeastProtInt 0.035 0.035 0.035 0.040 0.056protNW1 0.000 0.000 0.000 0.000 0.000protNW2 0.017 0.023 0.017 0.017 1.009protNW3 0.006 0.007 0.006 0.007 0.008protNW4 0.011 0.011 0.011 0.011 0.013onfus 0.360 0.373 0.360 0.360 0.360onfusN 0.220 0.220 0.220 0.220 0.220AS-19971108 0.016 0.017 0.016 0.016 0.016AS-19980402 0.013 0.014 0.013 0.013 1.006AS-19980703 0.021 0.098 0.021 0.021 0.021AS-19981002 0.040 0.050 0.040 0.088 0.039AS-19990114 0.081 0.055 0.057 0.051 0.051AS-19990402 0.111 0.133 0.059 0.055 0.097netsiene 0.009 0.009 0.009 0.009 0.009polblogs 0.111 0.111 0.111 0.111 0.111power 0.003 0.003 0.003 0.004 0.005email 0.265 0.257 0.273 0.279 0.266Table 3.2: Nut values for the solutions ahieved with NNC and spetral lustering on thenetwork data. The distane funtions are: ommute distane (CD), hitting time (HT),normalized ommute distane (ND), and symmetri normalized ommute distane (SND).77
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Figure 3.5.1: Nut results for NNC with ommute distane and spetral lustering, for thebiologial (left) and other networks (right).Table 3.2 ompares the results of NNC with various distanes and spetral lustering(SC) on the networks. Figure 3.5.1 illustrates the di�erenes for the ommute distane. Thein�uene of the distanes is disussed in greater detail in Subsetion 3.5.5. In general, theresults of NNC and SC are omparable despite the simpliity of the NNC algorithm.Given that NNC has been proved to be onsistent, but not (yet?) SC, one would expetthe solutions returned by the algorithms to di�er at least to some degree. In general, theydo di�er, but sometimes not very muh. This may be due to the relation of the ommutedistane and spetral lustering: both use the eigenvetor(s) of the Laplaian to reognize�loseness�.In general, it is di�ult to atually evaluate a lustering with respet to how reasonable itis for the given data. Hene, let us look at a small example, where the solutions hardly di�er:the leaf onfusion matrix. Figure 3.5.2 shows the leafs and lists the groupings. Withoutself loops in the graph, both algorithms yield the same solutions. If self loops are allowed,the results do not hange for spetral lustering and the SND distane, and di�er by theassignment of node one (leaf 2) for the ommute and ND distanes. The di�erene betweenthe ut values is, however, minimal. Moreover, the lustering is also visually reasonable:the leaves are grouped into leaves with big dents, suh as maple leaves, and more globallyround-shaped or long leaves that are at most serrated.Sometimes, on the other hand, the Qn values for the solutions by NNC and SC di�ersubstantially, as for the protein network protNW2. They still di�er for networks 3 and 4,but not for network 1, where the Nut is 40 · 10−5 for all variants. Why do these networksbehave so di�erently? One reason may be that the networks protNW2 to protNW4 are muhsparser than protNW1 (see Table 3.1). Another reason may be grounded in the strutureof the spetrum of the graph Laplaians. The neighborhood struture in NNC is based onthe distane funtion, whih is based on the spetrum and eigenvetors of the Laplaian.This struture determines Fn and thus the solution of NNC. The ommute and hittingtimes sum up di�erenes of eigenvetor entries of L, weighted by the inverse eigenvalue (f.Subsetion 3.3). ND and SND use all eigenvetors of a normalized Laplaian with a weight5.Spetral lustering, on the other hand, is limited to the lowest subset of the spetrum of
Lrw, without weight on the eigenvetors. Hene, if the spetrum of Lrw is steep in the �rstpart, one would not expet the distanes used by SC and NNC to di�er muh. With a �atter5The eigenvalues of Lrw and Lsym are the same [von Luxburg, 2006℄.78
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Figure 3.5.2: Leaves for the leaf onfusion matrix. Leaves 1, 13, 19 and 27 are notinluded in the matrix. The NNC and SC lusterings then group (2, 4, 8, 16, 17, 18, 20)and (3, 5, 6, 7, 9, 10, 11, 12, 14, 15, 21, 22, 23, 24, 25, 26, 28, 29, 30). (image kindly provided byFrank Jäkel)
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Figure 3.5.3: Spetra of the un-normalized (top) and normalizedLaplaians (middle) for proteinnetworks 1, 2 and 3. The bottomrow is the weighting 1/λ for thespetrum of Lrw. Note that theaxes have been shifted for the in-verse spetra to make the graphsmore visible.
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spetrum, however, a larger part of the eigenvetors will reeive signi�ant weights for theCD, HT, ND and SND. This part, however, is not entirely onsidered in SC. As a result, thesolutions of the algorithms may di�er as well. Indeed, the spetrum of Lrw inreases fastestfor Network 1, as Figure 3.5.3 shows. The steepness of the spetrum does not provide afull explanation though, beause the spetrum for Network 2 seems to rise faster than thatfor Network 3 in the beginning. Another fator may be the relative drop of weights: it islargest for Network 1, and smallest for Network 2. The striking plateau in the spetra forthe normalized and unnormalized Laplaians of Network 2 ould also play a role, possiblyalso with respet to numerial stability.Coordinate data: k-NN and full graphsFrom the oordinate data, we onstruted k-nearest neighbor graphs with k = ⌈lnn⌉ andthe Gaussian kernel to transfer distane to similarities (see Subsetion 3.5.1). The width σof the kernel was the overall mean distane of a point to its k-th nearest neighbor (σ1, ifmarked by `*') or the mean distane to the k nearest neighbors (σ2).For eah data set, we generated z = 40 training sets by subsampling n/2 points. Eahalgorithm was repeated r = 50 times on eah training set, with di�erent random initial-izations. On eah set, the best of the r partitions (by the quality funtion) was taken asthe solution. Denote the quality value of run r by q(r). We report results in the formmeanz(minr q(r)) ± standdarddevz(minr q(r)).For Nut, we ompare SC and NNC with the ommute distane on the nearest neighborgraph. The WSS is optimized by k-means on the one hand and NNC with Eulideandistanes on the other, the latter to better resemble k-means and the objetive, both usingthe Eulidean distane.Only the ellyle data required a di�erent preproessing beause of missing values. SeeSetion 3.5.2 for further details. In onsequene, we obtained a matrix of dot produts thatwas used to onstrut the adjaeny matrix of the graphs. A modi�ed version of Matlab's
k-means algorithm minimized the WSS for omparison.The �rst row for eah data set in Table 3.3 shows the Nut and WSS values for thesolutions by NNC and SC or k-means (extensions expressed in the other rows are disussedin the next subsetion). The results of NNC and the omparison algorithms are, as for thenetworks, in the same range. For Nut, NNC is better on some graphs, whereas for WSS,80



Nut WSSNNC δ SC δ NNC k-meansellyle* 0.10 ± 0.01 0.12 ± 0.02 0.78 ± 0.03 0.78 ± 0.030.15 ± 0.03 0.16 ± 0.02 0.78 ± 0.02 0.78 ± 0.030.19 ± 0.06 0.19 ± 0.04 0.80 ± 0.03 0.79 ± 0.02breastaner* 0.09 ± 0.02 0.11 ± 0.02 7.04 ± 0.21 6.95 ± 0.190.21 ± 0.07 2.35 0.22 ± 0.07 2.06 7.12 ± 0.22 7.12 ± 0.200.21 ± 0.10 2.37 0.21 ± 0.06 1.94 7.26 ± 0.23 7.18 ± 0.22diabetis* 0.03 ± 0.02 0.03 ± 0.02 6.71 ± 0.22 6.62 ± 0.220.05 ± 0.05 4.70 0.04 ± 0.03 3.07 6.72 ± 0.22 6.72 ± 0.220.06 ± 0.11 6.37 0.04 ± 0.03 2.73 6.91 ± 0.23 6.83 ± 0.22german* 0.02 ± 0.02 0.02 ± 0.02 18.56 ± 0.28 18.26 ± 0.270.03 ± 0.03 3.18 0.04 ± 0.08 NaN 18.45 ± 0.32 18.35 ± 0.30
∞ ∞ ∞ ∞ 18.90 ± 0.30 18.62 ± 0.29heart* 0.17 ± 0.02 0.18 ± 0.03 10.77 ± 0.47 10.65 ± 0.460.30 ± 0.07 1.80 0.28 ± 0.03 1.55 10.74 ± 0.46 10.75 ± 0.460.29 ± 0.10 1.74 0.26 ± 0.04 1.44 11.02 ± 0.50 10.98 ± 0.46image* 0.00 ± 0.00 0.05 ± 0.22 12.23 ± 0.72 12.17 ± 0.710.10 ± 0.30 ∞ ∞ ∞ 12.27 ± 0.73 12.24 ± 0.730.05 ± 0.22 ∞ 0.14 ± 0.34 ∞ 12.39 ± 0.72 12.33 ± 0.73splie* 0.44 ± 0.16 0.36 ± 0.10 69.89 ± 0.24 68.99 ± 0.240.66 ± 0.18 1.87 0.58 ± 0.09 1.80 69.18 ± 0.25 69.03 ± 0.24
∞ ∞ ∞ ∞ 70.48 ± 0.32 69.93 ± 0.27bw* 0.02 ± 0.01 0.02 ± 0.01 3.98 ± 0.26 3.97 ± 0.260.08 ± 0.07 0.04 ± 0.01 3.98 ± 0.26 3.98 ± 0.26bupa* 0.13 ± 0.08 0.15 ± 0.09 4.29 ± 0.30 4.26 ± 0.31
∞ ∞ionosphere* 0.04 ± 0.01 0.06 ± 0.03 25.77 ± 1.63 25.72 ± 1.630.14 ± 0.12 0.12 ± 0.11 25.77 ± 1.63 25.76 ± 1.63pima* 0.03 ± 0.03 0.03 ± 0.03 6.73 ± 0.23 6.62 ± 0.220.09 ± 0.13 0.05 ± 0.04 6.73 ± 0.23 6.73 ± 0.23usps0v1 0.00 ± 0.00 0.00 ± 0.00 160.76 ± 5.03 160.47 ± 5.040.01 ± 0.02 198.17 0.00 ± 0.00 1.24 160.50 ± 5.04 160.51 ± 5.04usps2v3 0.04 ± 0.01 0.05 ± 0.01 224.14 ± 2.97 222.01 ± 2.940.05 ± 0.02 1.30 0.06 ± 0.01 1.18 222.29 ± 2.95 222.14 ± 2.95usps4v5 0.02 ± 0.00 0.02 ± 0.00 215.72 ± 3.45 214.64 ± 3.420.04 ± 0.04 2.19 0.02 ± 0.00 1.28 214.74 ± 3.42 214.74 ± 3.42usps6v7 0.00 ± 0.00 0.00 ± 0.00 186.28 ± 5.06 186.16 ± 5.050.01 ± 0.02 19.62 0.00 ± 0.00 1.19 186.17 ± 5.05 186.17 ± 5.05usps8v9 0.04 ± 0.01 0.04 ± 0.01 224.13 ± 8.45 220.59 ± 8.410.10 ± 0.21 2.61 0.09 ± 0.18 7.12 224.23 ± 7.73 222.50 ± 7.86Table 3.3: Results for oordinate data with k-NN graphs. The �rst row shows the meantraining performane, the seond and third show performane on the test set with point-wiseand `nln' extensions, respetively (Extensions are disussed in Subsetion 3.5.4). δ is themean of the quotient between test and training performane on the test set. The width ofthe Gaussian kernel was σ1 for those graphs marked by `*', and σ2 for the others. For thenln extension, it was σ2 for all. Note: The NNC ode for Nut had a small bug here. Theorreted values are in Table B.1 in the Appendix. They do not di�er muh, though, onlythat NNC is atually better than here. 81



Table 3.4: Results for full graphs of oordi-nate data. The �rst line for eah graph isthe objetive value on the training set, theseond line is the quality on the test set (bypoint-wise extension). NutNNC SCellyle 0.69 ± 0.23 0.55 ± 0.180.65 ± 0.15 0.56 ± 0.18breast-aner 0.43 ± 0.21 0.34 ± 0.180.60 ± 0.05 0.58 ± 0.05diabetis 0.07 ± 0.07 0.04 ± 0.04
∞ ∞german 0.39 ± 0.19 0.23 ± 0.090.39 ± 0.18 0.31 ± 0.04heart 0.72 ± 0.04 0.69 ± 0.020.80 ± 0.10 0.70 ± 0.02image 0.00 ± 0.00 0.00 ± 0.00
∞ ∞splie 0.99 ± 0.00 0.97 ± 0.000.99 ± 0.00 0.97 ± 0.00the k-means algorithm is usually a little better or equivalent. Some of the graphs, however,admittedly had an unfavorable struture. The k-nearest neighbor graph for german hasthree omponents, and the image graph has very low edge weights, down to a minimumnonzero value of 4.35 ·10−138. The Laplaian of usps0v1 is badly onditioned, so the resultsare questionable for this graph, too. The remaining data should be well-behaved.One might argue that the proof of onsisteny assumes that the full spatial information,represented by exat distanes, is available, whereas the pruning of edges to nodes otherthan the k nearest neighbors may introdue inauraies. Hene we also onstruted fullgraphs from some oordinate data sets. Table 3.4 summarizes the results (�rst row foreah data set). Here, NNC performs a little worse than spetral lustering. The problemwith these full graphs is that the spetrum often seems to be very biased to one point:for distanes based on the spetrum, suh as the ommute distane, one single seed pointis the losest to almost all other points. In that ase, the resulting solution will be veryunbalaned. The funtion spae has been redued in an unfavorable way. This does nothappen as strongly for the k-NN graphs. One reason may be that the additional many smalledges average out the high edge weights (when, for probability in the Markov hain, edgeweights are divided by the degree), and thus the graph is more similar to a lique than the

k-NN graph. In a lique, the uts are more equal and the struture is weaker. Then theeigenvetors orresponding to the end of the spetrum of the unnormalized Laplaian arealso more prone to onverge to Dira funtions (f. Setion 3.3). In fat, the ND and SNDdistanes, motivated by the Dira problems, lead to better results here, whih sometimesreah the performane of spetral lustering.3.5.4 Generalization abilityAfter observing that NNC performs omparably to �diret optimization� algorithms on atraining set, we would like to measure the amount of over�tting indued by the algorithms.For eah of the oordinate data sets we lustered n/2 points and extended the lusteringto the other n/2 points. Then we ompared the objetive funtion values on the test setlabeled by the extension. This experiment was also repeated z = 40 times, and in eahrepetition, the partition out of r = 50 initializations was hosen as fn.82



There are several possibilities of extension, for examplepoint-wise (pw) Add the test points one by one (separately) to the training set and assignthe label that leads to the lower objetive value on the n/2 + 1 points, leaving thelabels of the n/2 training points �xed.nearest labeled neighbor (nln) Label the entire test set at one by assigning to eahtest point the label of its nearest labeled neighbor (nln). Closeness is measured by thedistane used to reate the neighborhoods.losest luster enter With WSS and the k-means algorithm, one might also want toassign the test points to their losest luster enter. This yields, for our graphs, thesame results as the point-wise extension.
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(d) Average WSS value on the test set withpoint-wise extension, NNC versus k-meansFigure 3.5.4: Value of Qn with diret optimization and extension (from Tables 3.3 and B.1).All values are normalized by the objetive value for the respetive omparison algorithm(SC, k-means) on the training set. For WSS, the quality of the partition of the test setis similar to or even better than that of the training set, whereas for Nut, the extensionomes with a greater relative loss.Table 3.3 shows that for the extensions, NNC is roughly omparable the other algorithms.This result questions our expetation of NNC being less prone to over�tting. The mostlikely explanation is that both k-means and spetral lustering already have reasonablygood extension properties. This may be due to the fat that, like NNC, both algorithms83



onsider only a sublass of all partitions: Voronoi partitions for k-means and partitionsindued by eigenvetors for spetral lustering.The value ∞ ours in the table if the extension generated an empty luster in one of the
z runs and Nut is the riterion. The table also shows the mean ratio of the objetive valuesfor labeling via an extension versus running the algorithm diretly on the set as trainingset. This ratio is often worse for NNC than for SC. Note, however, that the NNC trainingquality values are in general lower than those for SC.Figure 3.5.4 illustrates the di�erene of training and extension qualities relative to thetraining performane of SC and k-means for some of the data in Table 3.3 for WSS andTable B.1 for Nut. That means we divided the test quality by the training quality. WithNut, the extension appears to ome with a greater loss than with WSS. For the latter,NNC has a better test than training performane on some data sets. For k-means, this onlyours on the splie data set. This slight derease or stagnation in the objetive from diretlabeling to extension for NNC, together with a simultaneous slight inrease in the objetivevalue for k-means, equalizes the test performane of both algorithms.In summary, the ompared algorithms perform similarly with respet to extensions oftheir solutions. Similar results were ahieved by an analogous omparison of NNC and SCwith the RatioCut quality funtion.More than 2 lustersIn a setting like above, we tested the training and extension performane for three and fourlusters. Tables 3.5, 3.6 and 3.7 show the results. For Nut, we used the ommute distaneand point-wise extensions, and for WSS the Eulidean distane. For the latter, a point inthe test set was assigned to its losest luster enter.The more lusters we searh for, the higher is the probability that one of these lusterswill not be assigned a point in the extension on the test set, partiularly in small data sets.The risk is probably even higher if the lusters of the training set are unbalaned. An emptyluster in the test set leads to an in�nite Nut value. Therefore, the test performane is anaverage only over those repetitions in whih neither algorithm generated an empty lusteron the test set. For omparison, the tables also indiate the orresponding training error,averaged only over these non-in�nity runs.Apparently, the solutions of spetral lustering are more likely to end up with emptylusters on the extension. Often, the extensions for SC seem to be worse than for NNC,possibly indiating an over�tting by SC. This tendeny was less striking for only two lusters.In fat, judging from the averages in Figure 3.5.5, NNC performs better than SC on thetraining set but worse on the extension. The NNC extensions for more lusters, however,are equal to or better than those of SC, despite relatively worse training performane. Insome ases with K = 3, the training performane for NNC is worse than for SC, but theobjetive on the extension is better. Note that with more lusters, the number of points perluster is smaller. Maybe the advantages of NNC against over�tting ome more into playin suh a setting.With the WSS objetive, the training and test performane of NNC is mostly slightlyworse than that of k-means. Nevertheless, the same tendeny as for two lusters appears:Whereas the value of Qn is often lower on the extension than on the training set for NNC,the opposite is the ase for k-means, losing the gap between the performane of NNC and
k-means. Looking at Figure 3.5.5, this relative di�erene between the algorithms on trainingand test set seems to beome stronger on average.In summary, these experiments demonstrate that NNC's solutions are omparable to84



NNC SCdistane Qn δ %∅ Qn δ %∅ED 0.74 ± 0.07 0.47 ± 0.051.06 ± 0.41 1.48 7.5 1.40 ± 0.48 3.03 27.5CD 0.57 ± 0.09 0.47 ± 0.051.12 ± 0.45 1.98 7.5 1.43 ± 0.49 3.09 27.5HT 0.83 ± 0.22 0.47 ± 0.051.33 ± 0.42 1.78 22.5 1.37 ± 0.52 3.01 27.5ND 0.50 ± 0.06 0.47 ± 0.051.02 ± 0.44 2.05 10.0 1.43 ± 0.48 3.05 27.5SND 0.48 ± 0.05 0.47 ± 0.051.07 ± 0.48 2.23 12.5 1.38 ± 0.47 2.97 27.5Table 3.5: Nut results for NNC and spetral lustering for 4 lusters on the ellyle data.The �rst line is Qn on the training set, the seond Qn on the test set labeled by point-wise extension. δ is the average ratio between test and training performane and %∅ theperentage of the z runs in whih the extension reated an empty luster. The average Qnvalue on the extension is only over runs with nonempty lusters. The kernel width was σ1.Obviously, the results for NNC depend on the distane used. The extension of SC's solutionis more likely to reate empty lusters.NNC SC NNC k-meansdata Qn %∅ Qn %∅ Qn %∅ Qn %∅bw 0.08 ± 0.02 0.09 ± 0.02 3.28 ± 0.17 3.24 ± 0.170.08 ± 0.02 0.08 ± 0.02 3.28 ± 0.17 3.24 ± 0.170.43 ± 0.31 22.5 0.43 ± 0.38 37.5 3.30 ± 0.19 0.0 3.32 ± 0.21 0.0ionosphere 0.12 ± 0.04 0.15 ± 0.05 23.39 ± 1.68 23.18 ± 1.670.12 ± 0.04 0.14 ± 0.05 23.39 ± 1.68 23.18 ± 1.670.44 ± 0.33 12.5 0.63 ± 0.38 30.0 23.73 ± 1.65 0.0 23.71 ± 1.67 0.0pima 0.13 ± 0.05 0.11 ± 0.03 5.86 ± 0.22 5.65 ± 0.210.12 ± 0.03 0.11 ± 0.02 5.86 ± 0.22 5.65 ± 0.210.20 ± 0.19 10.0 0.35 ± 0.41 45.0 5.73 ± 0.20 0.0 5.68 ± 0.21 0.0breastaner 0.22 ± 0.05 0.25 ± 0.05 6.08 ± 0.17 5.89 ± 0.150.22 ± 0.05 0.25 ± 0.05 6.08 ± 0.17 5.89 ± 0.150.60 ± 0.31 7.5 0.79 ± 0.32 5.0 6.03 ± 0.18 0.0 5.98 ± 0.17 0.0diabetis 0.12 ± 0.05 0.11 ± 0.04 5.84 ± 0.24 5.63 ± 0.230.12 ± 0.05 0.11 ± 0.03 5.84 ± 0.24 5.63 ± 0.230.18 ± 0.09 15.0 0.32 ± 0.39 52.5 5.72 ± 0.24 0.0 5.68 ± 0.24 0.0heart 0.44 ± 0.06 0.42 ± 0.06 9.97 ± 0.34 9.71 ± 0.330.44 ± 0.06 0.42 ± 0.06 9.97 ± 0.34 9.71 ± 0.330.94 ± 0.31 2.5 0.85 ± 0.19 0.0 9.98 ± 0.35 0.0 9.97 ± 0.35 0.0Table 3.6: Training and extension results for 3 lusters and Nut (left) and WSS (right).The �rst line is the average training error on all z repetitions, the seond line the trainingerror on only those repetitions where the extension did not end up with an empty luster,and the third line is Qn on the test set labeled by point-wise extension (Nut) or assignmentto the losest enter (WSS). 85



NNC SC NNC k-meansdata Qn %∅ Qn %∅ Qn %∅ Qn %∅bw 0.15 ± 0.03 0.17 ± 0.04 2.93 ± 0.16 2.81 ± 0.140.16 ± 0.04 0.17 ± 0.04 2.93 ± 0.16 2.81 ± 0.140.61 ± 0.43 47.5 0.49 ± 0.24 30.0 2.86 ± 0.13 0.0 2.84 ± 0.14 0.0ionosphere 0.23 ± 0.06 0.26 ± 0.07 21.39 ± 1.77 21.10 ± 1.710.24 ± 0.06 0.27 ± 0.09 21.39 ± 1.77 21.10 ± 1.711.02 ± 0.60 35.0 0.88 ± 0.53 35.0 21.46 ± 1.74 21.40 ± 1.72pima 0.33 ± 0.07 0.33 ± 0.05 5.33 ± 0.20 5.06 ± 0.180.33 ± 0.05 0.33 ± 0.04 5.33 ± 0.20 5.06 ± 0.180.72 ± 0.41 15.0 1.12 ± 0.69 47.5 5.20 ± 0.21 0.0 5.14 ± 0.21 0.0breastaner 0.38 ± 0.07 0.40 ± 0.06 5.54 ± 0.17 5.31 ± 0.150.37 ± 0.08 0.39 ± 0.06 5.54 ± 0.17 5.31 ± 0.151.14 ± 0.56 15.0 1.27 ± 0.47 17.5 5.59 ± 0.17 0.0 5.52 ± 0.16 0.0diabetis 0.34 ± 0.07 0.33 ± 0.05 5.30 ± 0.21 5.04 ± 0.190.34 ± 0.07 0.32 ± 0.05 5.30 ± 0.21 5.04 ± 0.190.82 ± 0.35 20.0 0.90 ± 0.53 50.0 5.19 ± 0.25 0.0 5.13 ± 0.21 0.0heart 0.82 ± 0.10 0.74 ± 0.09 9.36 ± 0.33 8.99 ± 0.320.82 ± 0.10 0.74 ± 0.09 9.38 ± 0.30 9.01 ± 0.291.74 ± 0.42 15.0 1.70 ± 0.39 25.0 9.42 ± 0.37 2.5 9.35 ± 0.34 0.0Table 3.7: Clustering and extension results like in Table 3.6, but for 4 lusters.
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Figure 3.5.5: Quality values (normalized by the performane of the omparison algorithmon the training data) on the training (left) and test sets (right) for 2, 3 and 4 lusters forthe data in Tables 3.6 and 3.7. The objetive was Nut (top) or WSS (bottom).86
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σ2), right: WSS for oordinate data (breastaner, diabetis, german, heart, image, splie,thyroid, ellyle with σ2).those of diret optimization algorithms even for more than two lusters, and they also showgood extension properties even on �nite graphs with a relatively small average number ofnodes per luster. The extensions of NNC's solutions even seem to be less likely to generateempty lusters.3.5.5 DistanesSetion 3.3 introdues a hoie of distane funtions to use in Nearest neighbor lustering.In the following, we will analyze the impat of the di�erent distanes on the outome of thealgorithm.By intuition, a distane must �t the objetive funtion in apturing the onept of�density�, �loseness�, �onnetedness� inherent in Qn and the de�nition of a �good lustering�
Qn represents. In addition, the struture of the partiular graph might play a role, too. Onwell-separated data sets, the distanes may all be very similar. The di�erene between theEulidean and ommute distanes, for instane, depends on the embedding: the distaneswill di�er a lot in a graph that is shaped like a `C'. Hene, there is no universal solution tothe problem of whih distane suits best, and the exat orrespondene between distaneand quality funtion still remains a question to be answered.Distanes and QnTables 3.2 and 3.5 of the objetive values on networks, training sets and extensions demon-strate that the quality of the lustering an depend on the distane.For Nut, the Eulidean distane is usually the worst, beause it only overs distanesin the embedding spae Rd, and not diretly the graph struture with the existing edges.It is related to the edge weights by the Gaussian kernel, but many suh edges were prunedin the graph. The other distanes are related by the graph Laplaians, whih also form theonnetion to the relaxed Nut problem that is solved by spetral lustering. They onsiderthe graph struture via the Laplaian.These tendenies show up in Figure 3.5.6, whih ompares the average objetive valuesfor di�erent distanes. The solutions were generated with the same seed sets. For Nut,the ommute distane works best on average, for diret optimization and extensions of thelustering. On k-nearest neighbor graphs, the Eulidean distane is least appropriate. The87



other distanes are very similar on the networks (see also Table 3.2). The SND distanedi�ers most between training and test: whilst Qn is rather low on the training set, it evenexeeds the objetive for the Eulidean distane on the extension. This looks like over�tting,but may also be grounded in bad extension properties of SND, as it is also used to �nd thenearest neighbor for labeling the test points. Otherwise, CD, ND and SND are omparableon the training set and given networks, as is also the tendeny in Table 3.5 for four lusters.CD, ND and the hitting time give, on average, the best solutions on the extension.The distane most in line with WSS is the Eulidean distane, as beomes obvious inFigure 3.5.6. For WSS, performane is best with the Eulidean distane, even though theaverage di�erenes between the distanes are not great for the tested graphs.Properties of the neighborhoodsThe distane funtion de�nes Fn via the neighborhoods it helps to generate. It determineswhih seed a node is assigned to. Let us thus take a look at the properties of neighborhoods.
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What makes a �good� set of seeds?The �rst experiment investigates how di�erent measures on the seed set orrelate with theNut and Rut value. The results for both quality funtions were similar, so we onentrateon Nut here. The neighborhoods were omputed with three distanes: the ommute dis-tane, the hitting time from a seed to a node and the hitting time from a node to a seed.Apart from the graphs for thyroid (k = 6, σ = 10), heart (k = 8, σ = 100), USPS0vs1(k = 6, σ = 100), USPS2vs3 (k = 6, σ = 100), USPS8vs9 (k = 6, σ = 100), we used teninstanes of eah of four toy graphs. The toy graphs were onstruted as nearest neigh-bor graphs with k = 5 neighbors. For the nodes, we sampled n1 and n2 points from twoGaussian distributions with means µ1, µ2, and varianes Σ1, Σ2:1. µ1 = (0, 0), µ2 = (3, 3); Σ = I, n1 = n2 = 8002. µ1 = (0, 0), Σ1 = (0.5, 0; 0, 1); µ2 = (3, 0), Σ2 = (0.5, 0; 0, 2); n1 = 534, n2 = 10663. µ1 = (0, 0), Σ1 = (0.5, 0; 0, 1); µ2 = (3, 0), Σ2 = (0.5, 0; 0, 2); n1 = n2 = 8004. µ1 = zeros6(10, 1), Σ1 = diag([0.5, 0.5, 0.5, 1.0, 1.0, 1.0, 0.4, 0.4, 0.8, 0.8]), µ2 = 1.5 ·
ones(10, 1), Σ2 = diag([0.8, 0.4, 0.5, 1.0, 0.5, 0.6, 0.8, 1.0, 1.0, 0.4]); n1 = n2 = 800.We omputed the following measures and took averages over r = 100 randomly (uniformly)hosen seed sets of size ⌈lnn⌉ for eah graph:1. Average degree of the seeds: If degree is seen as an estimate for density, this measureenodes if a node is �entral� within a luster or at the boundary where the densitydereases. Is it better if the seeds are loated within lusters or at the boundary? Therelative loation of the sample points to eah other, though, is ignored.2. Variane of the degrees of the seed points, divided by the variane of the degrees ofthe entire graph: maybe it is better to have samples from regions of di�erent densities(enoded by di�erent degrees)?3. Maximum ommute distane from a seed to a non-seed node: Intuitively, this is aworst-ase measure how well the sample overs the data spae, that means how wellit is distributed.4. Maximum hitting time from a seed to a non-seed point: maxx∈S,y∈V \S H(x, y), where
S denotes the seed set. A motivation for this was Matthew's theorem [Aldous and Fill,2001, Thm. 26, Chapter 2℄ whih states that the maximum and minimum expetedover time (over all verties) an be bounded by the maximum and minimum HTbetween any two verties, respetively.5. Maximum hitting time from a non-seed point to a seed point: maxx∈S,y∈V \S H(y, x)6. Average ommute distane between the seeds: This measure shows how distributedthe seed set is on average.7. Minimum ommute distane between the seeds8. Maximum ommute distane between the seeds6The vetors and matries are noted like alls to Matlab funtions to save spae.91



Figure 3.5.10:Average orre-lations of themeasures withNut. The xaxis refers tothe index of theriterion. 1 2 3 4 5 6 7 8 9 10 11
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maxy∈V \S minx∈S H(x, y)11. Maximum hitting time from a node to the seed it is assigned to: maxy∈V \S minx∈S H(y, x).
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Figure 3.5.11: Correlation with �er-ror� for the toy graphs.
We omputed the Pearson orrelation of eahmeasure with the Nut value and lassi�ation er-ror. For the error, luster labels were taken as lasslabels and true labels orresponded to the distribu-tion a node was drawn from. The orrelation varieda lot from one graph to the other, so that a de�nitiveonlusion was impossible from the obtained data. Inaddition, the data was mostly widespread, so that alinear relationship was at least not diretly obviousby visual judgment.In general, orrelations were stronger for the realdata sets than for the toy graphs. The latter werepossibly more regular. The average orrelations forthe arti�ial and real data are partly ontraditory,as Figure 3.5.10 demonstrates. Measures 3, 5 and 8 orrelate positively for the toy graphs,but negatively for the real data. Intuitively, we expeted a positive orrelation for 3 and 5,beause larger distanes between seeds and the other points indiate that the seeds mightnot be well-distributed. On the other hand, these measures may be easily distorted byoutlier points. For Measure 8, one would expet a negative orrelation, if better distributedseeds reate more even neighborhoods. On the other hand, the largest maximum distaneis realized if all seeds but one are onentrated in one plae, and one outlier is far apart.The latter ould be the reason for the positive orrelation for the real data. In retrospet,Measure 8 annot apture well the overing of the entire seed set.A rather strong orrelation on both sets is with the maximum ommute distane betweena node and the seed it is assigned to (Measure 9). The larger the distane, the more spreadis at least one neighborhood ell, and this seems to be negative for the luster quality.Surprisingly, the same measure with the hitting time from node to seed behaves di�erently.This observation indiates the di�erene between the ommute distane and its summandsbased on hitting time. 92



Measure 6, the average ommute distane between the seeds, orrelates negatively onboth sets. This is somewhat surprising, if the measure overs the spread of the seed set,beause one expets well-distributed seeds to reate more even neighborhoods. Similarly toMeasure 8, an outlier ould though distort the average. Again, the exat loation of theseeds is ignored but probably important.The orrelations with �lassi�ation error�, shown in Figure 3.5.11, are very similar tothose with Nut in Figure 3.5.10.In sum, the orrelations were rather weak and di�use. Possibly the diret orrelationwas not the best measure. Moreover, we neither heked for ombinations of measuresnor nonlinear relations. This further analysis may have revealed more information, as it isprobably more than one fator that ounts.Piking the seeds (non-uniformly) by degreeThe previous subsetion demonstrates that it is hard to make out what exat properties a�good� set of seeds shows. The hope was that the quality of the partition by NNC ould beenhaned by a biased draw of the seeds.One simple riterion for seeds is their degree. Figures 3.5.10 indiates a slight negativeorrelation of the degree of the seeds with the Nut value. Therefore we studied the e�et ofhoosing the seed nodes uniformly from the p% of V with the highest degree. The perentagewas set to p = 100, 95, 80, 50, and 20. We onstruted nearest neighbor graphs (k = 5,
σ = 1.0) from n = 800 and n = 1600 points drawn from a mixture of two Gaussians. Thefollowing models were used:0 µ1 = (0, 0), µ2 = (3, 3), Σi = I.1 µ1 = (0, 0), µ2 = (3, 0), Σi = (0.5, 0; 0, 2).2 µ1 = (0, 0), µ2 = (3, 0), Σ1 = (0.5, 0; 0, 1), Σ1 = (0.5, 0; 0, 2).3 µ1 = (0, . . . , 0), µ2 = (1.5, . . . , 1.5), Σ1 = diag(0.5, 0.5, 0.5, 1.0, 1.0, 1.0, 0.4, 0.4, 0.8, 0.8),

Σ2 = diag(0.8, 0.4, 0.5, 1.0, 0.5, 0.6, 0.8, 1.0, 1.0, 0.4).For eah model, we generated 10 instanes and repeated NNC with r = 100 seed sets on eah.The results in Figure 3.5.12 are averages over those runs, for eah model. The tendenieswere similar for n = 800 and n = 1600 nodes, thus we only show the �gures for the latter.
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Figure 3.5.12: Best Nut value (left), average Nut value (middle) and average volume ratioof the lusters (right) over r = 100 seed sets for 40 arti�ially generated graphs from 4models with n = 1600 nodes. The x axis denotes p, number 0 to 3 are the graph numbers.The �rst plot illustrates the average best Nut value for the r = 100 repetitions. Itremains roughly stable as p varies. The average Nut value (middle plot), however, dereases93



with the restrition of the seed andidates. Here, the graphs behave di�erently though: thehange is minor for graphs 0 to 2, but large for graph 3, whih is higher-dimensional andmaybe well-separable. The rightmost plot displays the average ratio of the two lustervolumes, vol(C0)/ vol(C1), where vol(C0) < vol(C1). This ratio inreases with the degreelimitation, indiating that the luster volumes beome more equal. Hene, there may be ahange in the struture of the neighborhoods.In onlusion, even if the tendenies are small and depend on the graph, a bias of theseeds towards larger degrees seems to improve the partitions and make the volumes of thelusters more balaned.Seed sets of varying sizeReall that the omplexity of the NNC algorithm is polynomial for a seed set of size c logn,where c is onstant. This onstant should be hosen wisely, though, as the size of Fn isexponential in c. The next experiment demonstrates how the partitions hange as c growsfrom 1 to 3. As expeted, the average Nut values derease.Here we used the same graph models as in the previous subsetion, generating again 10instanes for eah model and sampling r = 100 seed sets for eah graph. We repeated thesame proedure for n = 800 and n = 1600 nodes. We always piked ⌈c lnn⌉ seeds. The sizeof the seed set S determines the size of the funtion lass Fn. As it grows, we an hoose
fn from a larger variety of andidates and hene expet to ahieve better objetive values.Note, however, that we did not investigate the extension properties of these partitions.
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Figure 3.5.13: Best Nut value (left), average Nut value (middle) and average volume ratioof the lusters (right) over r = 100 seed sets for 40 arti�ially generated graphs from 4models with n = 1600 nodes. The x axis denotes c.As shown in the �rst plot in Figure 3.5.13, the Nut value of best of the r partitionsdoes not hange muh as the seed set grows. The average Nut value, on the ontrary,dereases for all graphs (middle plot). So the probability of ahieving a good ut by Qnis higher. As in the previous experiment with seed degrees, the tendenies are strongeston the higher-dimensional graph (Model 3). The rightmost plot demonstrates that, as thenumber of neighborhood ells inreases, the volumes of the lusters beome more balaned.The balane of luster volumes is one riterion onsidered by the Nut objetive. Thedependeny of the volume ratio on c is reasonable, as a �ner ell struture allows for abetter �ne-tuning of the ut and better balaning.On the whole, the observed tendenies are analogous to those in the previous experiment:both a bias in the degree of the seed nodes and a larger seed set lead to a higher probabilityof ahieving a good partition (by Nut as Qn), and to more balaned luster volumes.94



3.6 Summary and DisussionIn this hapter, we presented an approah to lustering that aims to ahieve statistialonsisteny by a redution of the spae of andidate funtions. We only allowed funtionsthat are onstant on Voronoi tessellations of the spae. The result is an algorithm thatis statistially onsistent and runs in polynomial time, moving the graph ut problem forobjetives like Nut and RatioCut from NP to P. In that regard, we ahieved the goal ofsimplifying an NP-hard optimization problem based on re�etions from Statistial LearningTheory, replaing heuristis by ontrollable simpli�ations.In addition, the proof of onsisteny is stronger than results for other ommon lusteringalgorithms. Pollard [1981℄ proved that the minimizer of WSS on a �nite sample onvergesto the true global minimizer. But the k-means algorithm is not guaranteed to �nd thisminimizer. The solution of spetral lustering onverges to a limit lustering [von Luxburget al.℄, whih is, however, onjetured to potentially deviate from the true minimizer of Nut.Reall that spetral lustering only solves a relaxed version of the Nut problem, whereasNNC diretly optimizes Qn over Fn.Nevertheless, there is more than a theoretial side to eah algorithm. We showed howto improve the average running time of Nearest neighbor lustering by branh and boundand ertain heuristis. Experiments reveal that NNC performs roughly the same as diretoptimization algorithms, on both training and test sets. Against our expetations, partiu-larly for K = 2, it ould not outperform the omparison algorithms as to generalization. Areason may be that spetral lustering and k-means inherently redue the spae of andi-date funtions, similar to the diretly motivated restrition of NNC: k-means is limited toVoronoi tessellations of the data spae, and the solutions of spetral lustering are induedby some eigenvetors of the Laplaian. The minimizer of WSS that we aim for with k-meansonverges to the true global minimizer. K-means is restrited to loal minima, but withthe r = 50 restarts we provided in the experiments, the hanes of getting a good partitionare rather high, espeially for two lusters, if there are not too many loal minima. Onthe other hand, given its simpliity, NNC performs surprisingly well. Its results apparentlyimprove, in omparison to SC or k-means, as the number K of lusters grows. As K grows,there might be more loal minima that at least k-means an get stuk in.The approah followed by NNC leaves several diretions for further development: on theone hand, the algorithm an be optimized, for instane by the seletion of seed nodes toinrease the probability of a �good� neighborhood struture. On the other hand, the restri-tion of Fn ould be done in a related, but more sophistiated way, suh as by the ontinuityof andidate funtions, for example measured by some Lipshitz onstant. Another big issuefor future work, also from a theoretial perspetive, is the mathing of the distane funtionwith the objetive.
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Chapter 4ConlusionThe initial goal of the studies presented in this report was to modify an NP-hard optimizationproblem, namely graph uts for lustering, to gain in two respets: First, we aimed to sim-plify the problem to ideally make it solvable in polynomial time. Instead of using a heuristiwithout any guarantees on the solution, we took the viewpoint of Statistial Learning The-ory to simultaneously ahieve a seond advantage: statistial onsisteny. That means weonsider the data as a sample from a larger distribution, and try to optimize the riterionfor the entire spae. Consisteny ensures that the quality of the partition returned by thealgorithm will onverge to the quality of the global optimizer on the entire spae.To ahieve these aims, we took two approahes: First, we added a penalty term, amargin, to the disrete objetive. Our margin onsiders robustness of the solution, thoughonly loally. We stated the resulting problem as a �ow problem. However, only the relaxedversion is in P. In addition, some theoretial questions remain to be studied: To what kindof restrition of the funtion spae does the margin orrespond? Does it orrespond to theomplexity of the funtion spae, and, if so, in what way? These are ruial questions withregard to proving onsisteny.Seond, we restrited the spae of andidate funtions to those onstant on neighborhoodells. The resulting algorithm is statistially onsistent and runs in polynomial time. Itsperformane on �nite samples is omparable to that of standard algorithms suh as spetrallustering or k-means. This approah shows that the initial aim is ahievable even with asimple algorithm. Now it an be extended in several diretions. The neighborhood riterionindues a ertain ontinuity onstraint. Analogously, more sophistiated restritions of Fare oneivable, for instane by ontinuity riteria suh as Lipshitz onstants. Furthermore,the NNC algorithm an be improved by a more elaborate seletion of the seeds, whih maygive guarantees on the neighborhoods and thus Fn. The onstrution of the neighborhoodells itself bears room for development, too. The mathing of the quality Q and the distanefuntion, for example, is also of theoretial interest.Note, however, that neither approah guarantees the stability of the partition itself,beause onsisteny is de�ned with respet to the quality funtion. The study of stabilitywith respet to the partition funtions fn is another wide researh topi.Nevertheless, the approahes presented here are a �rst example of how to ombine om-binatorial optimization and SLT. We are keen to see more involved methods and approahesto follow. 97
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Appendix ANotation and Abbreviations
V ⊆ X set of nodes
E set of edges
Ci ⊆ V i-th luster
Ci = V \ Ci set of nodes that are not in the i-th luster
K number of lusters
w : E → R, w ∈ W edge weights
s : X × X → R+ similarity funtion
f : V → {0, 1}, f ∈ F partition funtion
P omplexity lass of problems that an be solved in polynomial time(on a deterministi Turing Mahine)
NP omplexity lass (non-deterministi polynomial time) of deisionproblems that an be solved in polynomial time on a non-deterministi Turing MahineSC Spetral lusteringNNC Nearest Neighbor ClusteringWe use a generalized notation for sums of edge weights: let A ⊆ V and v ∈ V , then

w(v, A) =
∑

u∈A

w(v, u),and analogously for w(A, v) and w(A, B) with B ⊆ V . We also use the notation cut(A, B) =
w(A, B).Graph properties
vol(G) = vol(V ) = w(V, V ) volume of the graph
D ∈ Rn×n diagonal matrix of node degrees with D(i, i) = d(Xi)
W ∈ Rn×n symmetri matrix of edge weights
L = D − W graph Laplaian (see von Luxburg [2006℄ for properties of Laplaians)
Lrw = I − D−1W ∈ Rn×n normalized graph Laplaian
Lsym = I − D−1/2WD−1/2 symmetri normalized Laplaian105



Learning TheorySLT Statistial Learning Theory
F lass of andidate funtions/preditors from whih we hoose f
Fn restrition of F
R : F → R true risk
R̂ : F × Xn → R empirial risk
Q : F → R quality funtional
Qn : F × Xn → R empirial estimate of Q
f∗ = argminf∈F Q(f) true global optimizer in F
fn = argminf∈Fn

Qn(f) optimizer of Qn from Fn

ρ MarginDistane and Quality funtions
Ncut Normalized CutRut Ratio CutMinut Minimum CutWSS Within-sum-of-squaresBW Between-Within luster similarityED Eulidean distaneCD Commute distaneHT Hitting timeND Normalized ommute distaneSND Symmetri normalized ommute distane

106



Appendix BCorretion
SC NNCbreast-aner 0.11 ± 0.02 0.10 ± 0.02

0.22 ± 0.07 0.20 ± 0.07diabetis 0.03 ± 0.02 0.03 ± 0.02
0.04 ± 0.03 0.04 ± 0.04german 0.02 ± 0.02 0.02 ± 0.02
0.04 ± 0.08 0.03 ± 0.03heart 0.18 ± 0.03 0.17 ± 0.02
0.28 ± 0.03 0.28 ± 0.04splie 0.36 ± 0.10 0.43 ± 0.16
0.58 ± 0.09 0.66 ± 0.17bw 0.02 ± 0.01 0.02 ± 0.01
0.04 ± 0.01 0.04 ± 0.03ionosphere 0.06 ± 0.02 0.04 ± 0.01
0.12 ± 0.11 0.12 ± 0.11pima 0.03 ± 0.03 0.03 ± 0.03
0.05 ± 0.04 0.04 ± 0.03ellyle 0.12 ± 0.02 0.10 ± 0.01
0.16 ± 0.02 0.15 ± 0.02Table B.1: Corretion for Table 3.3. The values are very similar, only that the generalizationperformane of NNC is atually better than in the old table.
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