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OverviewClustering problems, sometimes also formulated as graph 
ut problems, are often stated asinstan
es of dis
rete 
ombinatorial optimization problems. As su
h they are often NP-hard.Thus, people have developed heuristi
s and relaxations, though often without any theoreti
alguarantees on the solution. Here, we 
onsider the 
lustering problem as a statisti
al learningproblem and try to approximate the best partition of the entire underlying spa
e. Statingthe problem in the statisti
al setting opens ways to remedy the exponential runtime bymodifying the optimization problem to simultaneously a
hieve statisti
al 
onsisten
y of thealgorithm. Consisten
y means that, as the number of samples in
reases, the quality of thereturned partition will 
onverge to the quality of the true global optimizer on the underlyingspa
e.To a
hieve this goal, we present two approa
hes. First, we add a margin 
riterion to theobje
tive to indu
e lo
al robustness of the preferred partition. This leads to a mixed integerlinear program that we also state in the 
ontext of �ow algorithms.Se
ond, we restri
t the set of 
andidate fun
tions via neighborhood 
ells around seednodes, and optimize the original 
riterion on this limited fun
tion spa
e. The resultingalgorithm, nearest neighbor 
lustering (NNC), is statisti
ally 
onsistent and does run inpolynomial time by 
onstru
tion. The average runtime is improved via bran
h and boundand 
ertain heuristi
s that still guarantee the optimal solution. We show that, despite itssimpli
ity, NNC performs 
omparably to standard 
lustering algorithms on the training setand with respe
t to generalization.Both approa
hes are motivated and dis
ussed from a theoreti
al viewpoint as well asinvestigated in experiments.
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Chapter 1Introdu
tionDeep in 
on
entration, Mr Biss investigates the 
rypti
 data in front of him, revealingrelations of various types. Where are 
ommunities in that graph? If he 
ould just 
ome upwith a ni
e partition of the 
ustomers, into market segments for example. The boss wouldbe impressed by su

essful produ
t positioning and identi�ed target markets. At the sametime and some blo
ks ahead, Dr. G.N. stares at expression patterns of genes his studentmeasured in a big mi
roarray. Groups of 
o-expressed genes might give him insight into newfun
tional relations. His 
olleague nearby ra
ks his brains to �nd homologous sequen
es tostudy gene families, while the librarian downstairs wishes for a method to order the massof arti
les on her 
omputer by topi
, maybe via key words.All these people's problems share a 
ommon basis: group a set of given data points (thatmay be 
onsidered samples from a larger population) su
h that points within a group are�similar�, and points from di�erent groups have few things in 
ommon. In short, they aretrying to solve a 
lustering problem, possibly with a statisti
al ba
kground. Clustering hasa wide range of appli
ations in areas su
h as image pro
essing, layout of ele
tri
al 
ir
uits,biology, so
ial s
ien
es, psy
hology and network analysis.In the following, we 
onsider the given �training data� set {X1, . . . , Xn} to be a sam-ple from a distribution P on some underlying spa
e X . A similarity or distan
e fun
tionmeasures relations or �
loseness� between two points. Stated like this, 
lustering is an un-supervised learning problem.In this setting, it 
an be interpreted as a graph partitioning problem: The points Xi
orrespond to nodes in the graph, and edge weights between nodes de�ne similarities. Wethen seek to 
ut the graph into parts su
h that there are few 
onne
tions between the parts,but the nodes within a part are densely 
onne
ted.The properties of a �good� partition or 
lustering are 
ommonly 
aptured by a qualityfun
tion Q (or Qn) that assigns a quality value to ea
h possible partition. The goal is thento �nd the partition optimizing this fun
tion.A vast amount of resear
h, from areas ranging from 
ombinatori
s, statisti
s, algorithmanalysis, optimization, network and graph theory, to so
ial s
ien
es, has been devoted toalgorithms, models, theoreti
al properties of 
lustering as well as de�nitions of a good parti-tion and quality measures for 
lusterings. Hen
e we 
annot enumerate all approa
hes here.The algorithms may be divided into hierar
hi
al and partitional methods. Hierar
hi
al 
lus-tering subsequently splits the data into smaller groups (divisive or top-down), or, bottomup, joins similar groups (agglomerative) until the desired number of 
lusters is rea
hed.Partitional methods, whi
h we 
onsider in this report, do not 
reate su
h a tree but split9



the data at on
e. Alternatively, approa
hes to 
lustering 
an be 
ategorized by the datamodel they assume. We will detail su
h a distin
tion in the next se
tion.1.1 Two approa
hes to 
lusteringIn view of the data model, the 
lustering problem 
an be viewed from two perspe
tives. Onthe one hand, we 
onsider the given sample of size n as an independent, separate data set,that means an instan
e of a 
ertain problem, and hen
e try to �nd the best partition of thosepoints by optimizing a quality fun
tion Qn on this data set. This approa
h traditionallyleads to a dis
rete optimization problem and 
ombinatorial algorithms. On the other hand,we may view the given data as a sample from an underlying data spa
e X endowed with aprobability measure, and thus use the sample to estimate a good partition of the entire spa
e.Ideally, 
lusters are distin
t regions of high density. The quality of the 
ontinuous partitionis measured by a fun
tion Q, and Qn is its estimator on a �nite sample. This is the approa
htaken by statisti
al learning theory. In this statisti
al setting, however, the 
lustering withthe best quality on the dis
rete data set may not be the dis
rete 
orrespondent of the optimalpartition of the spa
e. In other words, the optimizers of Q and Qn are not equivalent. Inthe following, we take a 
loser look at both approa
hes.1.1.1 The �dis
rete optimization� approa
hThe �dis
rete optimization� approa
h states 
lustering as an optimization problem on the�xed data set {X1, . . . , Xn}, in general a minimization of a parti
ular quality fun
tion Qn,possibly with additional 
onstraints.For many obje
tive fun
tions, espe
ially those in
luding a balan
e 
riterion on 
lustersizes, the optimization be
omes NP-hard [see e.g. Kannan et al., 2004, Shi and Malik, 2000,Wagner and Wagner, 1993℄. The di�
ulty of the optimization is grounded in the numberof possible partitions. The number of distin
t assignments of n points to K 
lusters isexponential in n [Hastie et al., 2001, p. 461℄:
1

K!

K∑

i=1

K(−1)K−i

(
K

i

)
in.If the behavior of the obje
tive fun
tion for small 
hanges in the assignment is not simple, asfor purely additive 
riteria su
h as Min
ut (see Se
tion 1.2.1), then we must sear
h throughan exponential number of partitions.To avoid exponential runtimes, people usually revert to heuristi
s or relaxations, tradingruntime for an approximate, suboptimal solution. A 
ommon 
ompromise is to use iterativegreedy des
ents [Hastie et al., 2001, Ch. 14.3.5℄ like the k-means algorithm, guaranteedto �nd a lo
al optimum but not ne
essarily the global minimizer. The behavior of k-means, for instan
e, is sensitive to the initialization [see e.g. Milligan, 1980, Peña et al.,1999℄. Alternatively, relaxations of 
ertain 
onstraints 
an make the problem easier to solve,with a loss in the optimality of the solution. Spe
tral 
lustering is an example for su
h arelaxation [see e.g. von Luxburg, 2006℄. For some variants of spe
tral 
lustering, 
ertainworst-
ase guarantees 
an be proved [e.g. Kannan et al., 2004℄. Spielman and Teng [1996℄show approximation guarantees on bounded-degree planar graphs and �nite element meshes.Nevertheless, for the RatioCut obje
tive, there are examples where spe
tral 
lustering willnot �nd a good partition [Guattery and Miller, 1995℄. For many algorithms, no statements
an be made about how far the approximate solution is to the optimal one.10



Only simple obje
tives keep the exa
t optimization in P. Min
ut, for example, 
an be
ast as a Max�ow problem by duality theory. A number of algorithms solve the lattere�
iently [see e.g. Papadimitriou and Steiglitz, 1982, Ch. 6, Ahuja et al., 1993, Ch. 6�8℄.1.1.2 A glimpse on Statisti
al Learning TheoryAlternatively, the data may be seen as a sample from a larger distribution, as in Statisti
alLearning Theory (SLT). In the following, we give an overview of SLT with a fo
us on
lassi�
ation. For a detailed introdu
tion, refer to Devroye et al. [1996℄, Vapnik [2001℄,for instan
e. The goal in SLT is to learn rules or estimators based on a �nite 
olle
tionof training examples rather than predetermined probability models. Hen
e, SLT appliesto problems whose physi
s are di�
ult to model, and there is not su�
ient experien
e fora

urate and 
omplete probability models [Nowak, 2007a℄.Classi�
ationIn 
lassi�
ation, we are given a sample {(X1, Y1), . . . , (Xn, Yn)} ⊆ X × {+1,−1} of points
Xi and their true labels Yi. Those points are drawn i.i.d. from an unknown probabilitydistribution P (X, Y ) on X × {+1,−1}. Our goal is to infer a fun
tion f : X 7→ {+1,−1}that 
orre
tly predi
ts the labels of all points from X . A loss fun
tion L(f(Xi), Yi) spe
i�esthe 
ost of a mispredi
tion, for example the 0-1 loss [Vapnik, 2001, p. 19℄

L(f(Xi), Yi) =

{
0 if f(Xi) = Yi

1 otherwise. (1.1.1)The overall expe
ted risk or loss,
R(f) = E(X,Y )[L(f(X), Y ] =

∫
L(f(X), Y )dP (X, Y ), (1.1.2)indi
ates the quality of a partition f that we aim to optimize by 
hoosing the best f froma hypothesis spa
e F . Formally, we seek to �nd

f∗ = argmin
f∈F

R(f).In more general terms, we de�ne a quality fun
tion Q : F → R that measures the goodnessof a 
andidate predi
tor, and then try to �nd the f ∈ F minimizing this 
riterion Q. In
lassi�
ation, the quality is measured by the expe
ted rate of mispredi
tions, so Q(f) =
R(f).Learning needs assumptionsFor this inferen
e of f , however, we need take some general prin
iples into a

ount [Bousquetet al., 2004℄. Learning is only possible with assumptions. Without assumptions, the trainingpoints 
arry no information about the labels of future observations. If we �x the labels of thetraining points, we 
an still label all other points arbitrarily. Whi
h su
h labeling is the best?This dilemma is summarized in the No Free Lun
h Theorem. First, the future observations,for whi
h labels will be predi
ted, must be related to past ones. Here, this means theystem from the same or distribution P (X, Y ) or at least a related one. Another importantassumption is 
ontinuity: if X is similar to the training point Xi, then Y is expe
ted to be11



Figure 1.1.1: Example for over�tting.The X are uniformly distributed on theinterval [−5, 5], and the true labeling is
−1 for X < 0 and +1 for X ≥ 0 (dashedline). The training examples are markedby⊗. A predi
tor fn that only labels the
+1 training examples positively (bla
kline) will a
hieve zero empiri
al error buta true error of R(fn) = 0.5, whi
h is theworst possible. See the text for details. −5 −4 −3 −2 −1 0 1 2 3 4 5

similar to Yi. Only if the assumptions hold is it possible to 
onstru
t 
onsistent algorithms,that is with more training data, the predi
tions approa
h the optimal ones. Yet with a �nitedata set, the predi
tions may be arbitrarily bad, if we 
an 
hoose f to be any fun
tion. Hen
eand se
ond, the ability to generalize requires spe
i�
 knowledge, su
h as assumptions whatthe optimal 
lassi�er f∗ looks like. We 
an en
ode this model for example in the way wede�ne F , restri
ting it only to �reasonable� 
andidates. The resulting algorithm works beston problems where these assumptions are a
tually met.Minimize the riskOn
e we have �xed the assumptions, how 
an we �nd a 
lassi�er with minimal expe
tederror? Without knowing the exa
t joint distribution P (X, Y ), we 
annot 
ompute the riskfun
tional R(f) dire
tly. Two solutions seem possible: estimate the joint distribution Pfrom the training set, and derive the de
ision rule from this estimation, or use the trainingset to dire
tly infer f . Sin
e the former is usually more di�
ult than the dire
t design ofa rule, we use the latter approa
h: �When solving a problem, try to avoid solving a moregeneral problem as an intermediate step� [Vapnik, 2001, p. 30℄. We hen
e estimate R(f) bythe empiri
al risk
R̂(f) =

1

n

n∑

i=1

L(f(Xi), Yi) = Qn(f). (1.1.3)The minimization of this estimate is the basis of the prin
iple of Empiri
al Risk Minimization(ERM). More generally, we de�ne an estimator Qn of Q that works on a �nite sample of npoints, be
ause we 
annot 
ompute Q dire
tly.The natural question to arise here is whether it makes a di�eren
e to optimize Qn or Q.By the law of large numbers, R̂(f) 
onverges to R(f) for any �xed f as n goes to in�nity,like a mean to its expe
tation. But how mu
h does the quality Q of fn, an optimizer of Qnfrom F , di�er from Q(f∗), if fn was found with a �nite sample? The law of large numbersholds only for a �xed f , but we 
an 
hoose any f ∈ F after seeing the data. And whatabout the speed and varian
e of 
onvergen
e?Let us �rst take a look why these questions may be important. If F is large, then we
an �nd an f with zero empiri
al error for almost any training sample. Figure 1.1.1 showsan extreme example. Consider X to be the interval [−5, +5], and the true labeling −1 forall points smaller than zero (X < 0) and +1 for all points greater or equal to zero. Withthe given training sample and F in
luding all fun
tions from [−5, 5] to {−1, +1}, we mightminimize R̂ by setting fn(Xi) = 1 for all positive training examples, and fn(X) = −1 for12



all other X :
fn(X) =

{
1 for X ∈ {Xi | Yi = 1, 1 ≤ i ≤ n}
−1 otherwise. (1.1.4)Then we have R̂(fn) = 0, but R(fn) = 0.5, whi
h is as good as random guessing. Thestrategy of setting fn(X) = 1 only for those X that are in the training sample and labeledpositively will yield the 
orre
t 
lassi�er if all possible X are in the training sample. Butwith a �nite sample and a large set of 
andidates, R̂ may be not enough to judge aboutthe a
tual quality of a 
lassi�er. We 
an a
hieve zero training error, but the expe
ted erroris still large. Thus, a small empiri
al error 
annot guarantee a small expe
ted error. Thisphenomenon is termed over�tting. If F was restri
ted to pie
ewise 
onstant fun
tions, forinstan
e, and still R̂(fn) = 0, then R(fn) would de
rease with signi�
ant probability. Let

a be the smallest area around the positive training samples that is 
ompatible with theminimal length cmin of a 
onstant pie
e. If the points are well separated, then a is cmintimes the number of positive training examples. Then R(fn) ≤ 0.5 − a/10. Very likely, agrows as n goes to in�nity, and faster than the integral over all positive samples.So what do we a
tually need for a reliable inferen
e prin
iple?Consisten
yWhat we wish to have is an inferen
e prin
iple that returns a predi
tor fn whose quality
onverges to the optimal quality. To judge it, we require that its empiri
al quality approa
hesthe quality of the true minimizer, Q(f∗), in the limit. Then, in the limit, Qn(fn), Q(fn)and Q(f∗) are the same: Qn estimates the quality Q(fn) 
orre
tly, and fn is as good as thetrue optimizer. Su
h a prin
iple is 
onsistent.De�nition 1 (Consisten
y). (adapted from [Vapnik, 2001, p. 36℄) The ERM prin
iple,returning fn for a sample of size n, is 
onsistent for a set of fun
tions F and a probabilitydistribution P (X, Y ) if the sequen
es Q(fn) and Qn(fn) 
onverge in probability to the samelimit:
Q(fn)

P−−−−→
n→∞

Q(f∗) (1.1.5)
Qn(fn)

P−−−−→
n→∞

Q(f∗). (1.1.6)Stri
tly speaking, if the 
onvergen
e of the sequen
es is only in probability, then theprin
iple is weakly 
onsistent [Devroye et al., 1996, Def. 6.1℄. A re�nement of this de�nitionex
ludes trivial 
ases. The prin
iple is nontrivially 
onsistent if the 
onvergen
e (1.1.6) alsoholds for any subset Fc of F whose members have an error Q(f) of at least c (c ∈ R) [Vapnik,2001, p. 37f℄.Vapnik's �Key Theorem of Learning Theory� [Vapnik, 2001, Thm. 2.1℄ gives a ne
essaryand su�
ient 
ondition for 
onsisten
y: The empiri
al quality Qn must 
onverge uniformly(one-sided), that means for all fun
tions in F , to the expe
ted quality Q:
∀ε > 0 lim

n→∞
P{sup

f∈F
(Q(f) − Qn(f)) > ε} = 0If the di�eren
e between Qn(f) and Q(f) is small for all f ∈ F , then the minimizer of Qnmust still be de
ent with respe
t to Q.How 
an we a
hieve uniform 
onvergen
e, and how fast or reliable is this 
onvergen
e?13



Convergen
e BoundsThe empiri
al and true risk behave like a mean and its expe
tation. Con
entration-of-measure inequalities bound the deviation between these two quantities. An appli
ation ofHoe�ding's inequality to Q = R and Qn = R̂ yields [Bousquet et al., 2004, p. 177℄
P{|Qn(f) − Q(f)| > ε} ≤ 2 exp

(
−2nε2

)
.This bound holds, however, only for one �xed fun
tion. For a simultaneous bound for all

f ∈ F we 
onsider the probability that the di�eren
e deviates for more than ε for any f .If |F| is �nite, then this probability 
an loosely be bounded by the sum of the deviationprobabilities for ea
h of the |F| 
andidates, a

ording to the rule P (A∪B) ≤ P (A)+P (B).Hen
e, by this union bound, [Bousquet et al., 2004, p. 178℄
P{sup

f∈F
(Q(f) − Qn(f)) > ε} ≤ 2|F| exp

(
−2nε2

)
= 2 exp

(
ln |F| − 2nε2

)
. (1.1.7)Setting the right hand side to δ, we 
an rewrite Equation (1.1.7) in terms of 
on�den
eintervals: With probability at least 1 − δ,

Q(f) ≤ Qn(f) +

√
ln |F| + ln(1/δ)

2n
. (1.1.8)Thus, for 
onvergen
e, the size of F must grow sub-exponentially in n. But what happensfor an in�nitely large fun
tion 
lass? Then the 
omplexity of F 
an take the pla
e of its size.The 
omplexity measures the ri
hness of F , for instan
e, how many di�erent assignmentson a �nite sample 
an a
tually be realized by fun
tions from F . We will outline some
omplexity measures below. For the moment, let us denote the 
omplexity of F by C(F).Complexity measures will be des
ribed below. If C is the growth fun
tion, the VC entropyor the annealed entropy, then, by a tri
k 
alled symmetrization [S
hölkopf and Smola, 2002,Ch. 5.5℄, one 
an show that (for 
lassi�
ation) [Vapnik, 2001, Ch. 3.1℄, [S
hölkopf andSmola, 2002, p. 138℄

P{sup
f∈F

(Q(f) − Qn(f)) > ε} ≤ 4 exp

(
C(F) − nε2

8

)or, with probability at least 1 − δ,
Q(f) ≤ Qn(f) +

√
8

n

(
C(F) + ln

4

δ

)
. (1.1.9)This equation shows that the 
omplexity of F is inversely related to the 
on�den
e we 
anhave in Qn(f), and that limn→∞ C(F)/n = 0 is a 
ondition for uniform 
onvergen
e1. Sothe 
omplexity must grow more slowly than n, or the size of F must be sub-exponential in

n. In the 
ase of over�tting, Q(fn) and Qn(fn) di�er a lot be
ause C(F) is big relative to
n. Then a small empiri
al error does not imply a small expe
ted error. A restri
tion of the
omplexity of F may thus remedy the problem of over�tting.We 
an also view these bounds from a di�erent perspe
tive: �minimizing the risk on asmaller set of fun
tions requires fewer observations� [Vapnik, 2001, p. 66℄. For a deviationof at most ε with probability 1 − δ, we need at least

n ≥ 8

ε2

(
ln

4

δ
+ C(F)

)1This is a
tually the 
ondition for two-sided 
onvergen
e, one-sided 
onvergen
e has a slightly weaker
ondition (see Vapnik [2001, Ch. 2.4℄ for details). 14



overfittingunderfitting
Complexity
of F

estimation
errorPSfrag repla
ements Qn(fn)

Q(fn)
Figure 1.1.2: Over- and under�tting depen-dent on the 
omplexity of F . If F is not suitedfor the problem, then no fun
tion in F 
an �tthe data well, and both R̂ and R are high. If
F is very ri
h, we 
an �nd an explanation forany data, but this may not be a good �t for theentire spa
e, be
ause the estimation error or
on�den
e interval in
reases. (Figure adaptedfrom [Nowak, 2007b, Le
. 3℄.)samples. So the sample 
omplexity n must grow as O(C(f)) for �xed ε and δ. Hen
e,a fun
tion 
lass with restri
ted 
omplexity yields a more reliable predi
tor, provided thatthe 
lass still 
ontains reasonable 
andidates, meaning that the assumptions en
oded in Fmat
h the problem at hand.Before we explore how the 
omplexity restri
tion may be implemented in pra
ti
e, letus take a step ba
k and see where our algorithm 
an fail. Let Q∗ denote the Bayes risk,the minimal a
hievable risk if all possible fun
tions are taken into a

ount. Note that the
orresponding predi
tor need not be in F . The best we 
an a
hieve within F is Q(f∗) ≥ Q∗.So the deviation of the risk of our out
ome fn 
ompared to Q∗ may be divided into twoparts [Nowak, 2007b, Le
. 5℄:

Q(fn) − Q∗ = (Q(fn) − Q(f∗))︸ ︷︷ ︸estimation error + (Q(f∗) − Q∗)︸ ︷︷ ︸approximation error .The estimation error is due to the randomness of the training sample, and measures howgood the predi
tion is with respe
t to the best predi
tion in F . The approximation errormeasures the appropriateness of our assumptions: how mu
h do the restri
tions of F impairthe ability to model the problem? The ri
her F is, the smaller is the approximation error,but, as the bounds above demonstrate, the larger may be the estimation error. Thus, we needto �nd a tradeo� between the minimization of those two errors, regarding the 
omplexity of
F . How 
an this tradeo� be implemented in pra
ti
e, and how 
an one measure 
omplexity?Strategies to avoid over�ttingThere are two basi
 approa
hes to limiting the 
omplexity of the 
lass of 
andidate fun
tions[Nowak, 2007b, Le
. 3℄:1. Dire
tly restri
t the size or 
omplexity of F . This restri
ts the estimation error by thebounds above, but also sets a lower bound to the approximation error.2. Simultaneously minimize the 
omplexity and empiri
al error, by optimizing a modi�edterm: fn = argminf∈F{Qn(f) + λC(f)}. Su
h 
omplexity penalization methods seekto balan
e the tradeo� between approximation and estimation error. The additionalterm is sometimes also 
alled a regularizer. The parameter λ usually shrinks with nin pra
ti
e and may be 
hosen by hold-out validation.For 
lustering, we tried both approa
hes, a margin-based 
omplexity penalization method(Chapter 2), and a (data-dependent) restri
tion of the 
lass of admissible fun
tions (Chap-ter 3). 15



In the following, we will mention a sele
tion of methods implementing those two strate-gies. The method of sieves [Grenander, 1981℄ restri
ts the fun
tion spa
e Fn a

ording tothe number n of samples available, with |Fi−1| ≤ |Fi|. The predi
tor fn is the optimizer of
Qn from Fn: fn = argminf∈Fn

Qn(f). The 
lass Fn is, however, 
hosen independently ofthe training data. Data-adaptive model spa
es are better adapted to the distribution of thedata.The prin
iple of Stru
tural Risk Minimization (SRM) [e.g. Vapnik, 2001, Se
. 4.1℄ relieson the 
onstru
tion of a hierar
hi
al stru
ture F1 ⊆ F2 ⊆ . . . of fun
tion 
lasses of growing
omplexity. Within ea
h 
lass, we 
hoose the optimizer of the empiri
al quality Qn. Ofthose optimizers, we 
hoose the one that yields the best value for a generalization boundlike (1.1.9). This strategy 
an also be interpreted as a 
omplexity penalization method:
fn = argminf∈Fi

mini Qn(f) + pen(Fi), where pen is related to the 
on�den
e interval[Bousquet et al., 2004, p. 173℄.Further 
omplexity penalization methods in
lude the minimum des
ription length prin-
iple (MDL) [e.g. Vapnik, 2001, p. 106℄, where 
omplexity is measured by the number of bitsneeded for the des
ription of the predi
tor, via the 
ompression 
oe�
ient. This 
oe�
ientdepends on the number of 
andidate fun
tions and the ne
essary 
orre
tions. The marginof Support Ve
tor ma
hines is another measure of 
omplexity [S
hölkopf and Smola, 2002,Se
. 7.2℄, and its maximization is also related to a restri
tion of the 
omplexity. A 
onne
-tion may also be drawn to Bayesian methods, if the prior is interpreted as the 
omplexitypenalization [Nowak, 2007b, Le
. 3℄.Note that the 
hoi
e of the regularizer en
odes prior knowledge and assumptions justlike the restri
tion of F .Measures of ComplexityOver time, a variety of measures of the 
omplexity of a fun
tion 
lass have been 
rafted. Thefollowing outline of some representatives is mainly based on the des
riptions by S
hölkopfand Smola [2002, Ch. 5℄ and Vapnik [2001, Ch. 2℄.For 
lassi�
ation, 
onsider the number of ways a sample of n points 
an be partitionedby fun
tions in F . Of 
ourse this number also depends on the parti
ular sample. Denoteby N (F ,Zn) the number of ways the sample Zn = {(X1, Y1), . . . , (Xn, Yn)} 
an be labeledby fun
tions in F . The maximum su
h number over all samples of size n is denoted by theshattering 
oe�
ient N (F , n) = maxZn
N (F ,Zn). If F 
ontains all possible fun
tions, thenthis number is 2n. If F is restri
ted, then there is a limit after whi
h N (F , n) does not growexponentially in n any more. Hen
e its logarithm measures 
omplexity in a similar way as

ln |F|.For the 0-1-loss (Eq. (1.1.1)), we 
an also get the number of possible partitions as follows:Ea
h fun
tion f ∈ F has a loss ve
tor ξf = (L(f(X1), Y1), . . . , L(f(Xn, Yn))) on the sample
Zn. The number of di�erent loss ve
tors for the fun
tions in F equals N (F ,Zn).The expe
ted logarithm of N (F ,Zn) is the VC entropy HF of F :

HF(n) := EZn
[lnN (F ,Zn)].It measures 
omplexity analogous to the logarithm of the size of F , and we may thus repla
e

C(F) = HF(n) in the bound (1.1.9) [S
hölkopf and Smola, 2002, p. 138℄. Note that the VCentropy depends on the distribution of (X, Y ) and is thus di�
ult to 
ompute. A similarmeasure is the annealed entropy,
Hann

F (n) = lnEZn
[N (F ,Zn)].16



Sin
e it upper bounds the VC entropy, it 
an also be used as C(F) above. More �nely-grained measures, based on ε-
overs of F , are entropy and 
overing numbers [see S
hölkopfand Smola, 2002, Se
. 12.4.2℄.A distribution-independent upper bound on the VC and annealed entropy is the growthfun
tion, the logarithm of the shattering 
oe�
ient:
GF(n) = max

Zn

lnN (F ,Zn).We 
an use it as C(F) above as well. If F 
ontains all fun
tions, then the growth fun
tion is
n ln 2 for all n. It has been proved that for a restri
ted F though, there is a maximal number
n = h after whi
h the growth fun
tion does not grow linearly in n any more, be
ause notall possible partitions may be realized by fun
tions from F any more. This number h is theVC dimension of F . For n > h, the growth fun
tion only in
reases logarithmi
ally in n:
GF (n) ≤ h

(
ln n

h + 1
) [S
hölkopf and Smola, 2002, p. 141℄.Shattering 
oe�
ients and related measures 
onstitute only one possibility to de�ne
omplexity. The Radema
her average, for instan
e, 
aptures the ability of a fun
tion 
lassto �t random noise. The ri
her the fun
tion 
lass, the better it 
an �t or �explain� any givendata. A 
omplete de�nition and bounds may be found in Bousquet et al. [2004, Se
. 5.2℄.Another viewpoint is taken by 
ompression and leads to the Minimum des
ription lengthprin
iple. F is 
onsidered as a set of fun
tion tables (
odebook) and the labels of a sampleas a string. The number of bits required to 
ode su
h a string via a fun
tion in F , relativeto the string's length, is the 
ompression 
oe�
ient [Vapnik, 2001, Se
. 4.6.1℄. The en
odingin
ludes the number of the fun
tion plus a 
orre
tion if there is no fun
tion in F thata

urately 
odes the labels. Bounds on the risk or test error 
an be derived in terms of the
ompression 
oe�
ient [see e.g. von Luxburg, 2001, Se
. IV.1.2℄.What is di�erent in Clustering?The above introdu
tion fo
used on 
lassi�
ation as a learning problem. For 
lustering, someaspe
ts are di�erent.Firstly, in 
lustering, no labels but only the mere data points are given for training.That means Q does not 
orrespond to the risk of mis
lassi�
ation, if there 
an be su
h athing for 
lustering at all. Instead, it measures the quality of the 
ut by other 
hara
teristi
sthat one might wish a good 
lustering to have, for example, that the 
onne
tedness within
lusters should be large, but small a
ross groups. Some quality measures for 
lusteringwill be outlined in Se
tion 1.2.1. Qn then does not sum up some point-wise measure su
has errors, but may involve more 
omplex nonlinear terms. Thus, Qn does not obviously
onverge to Q like a mean to its expe
tation, so the 
on
entration inequalities may not bedire
tly appli
able as for the 0-1-loss.The la
k of given labels in the de�nition of Q for 
lassi�
ation and 
lustering may leadto some di�eren
es between 
onsisten
y and stability of labelings for 
lustering, 
ontrary to
lassi�
ation. Algorithmi
 stability is often de�ned as a measure of how mu
h the out
omeof an algorithm 
hanges if one sample point is repla
ed or removed from the training data.The 
hange may be de�ned either with respe
t to the expe
tation of a term involving thequality measure (su
h as the quantities E [|L(fn(X), Y ) − L(fnew

n (X), Y )|] [Bousquet andElissee�, 2002℄ or E [|Qn(fn) − Qn−1(f
new
n )|2

] [Rakhlin et al., 2005℄ or |Q(fn) − Q(fnew
n )|[Bousquet and Elissee�, 2002℄) or with respe
t to the a
tual labelings fn(X) (for instan
e,

‖fn − fnew
n ‖∞ [Bousquet and Elissee�, 2002℄ or P{fn(X) 6= fnew

n (X)} [Kearns and Ron,1997℄). For 
lassi�
ation, there is a 
lose relationship between those two viewpoints. If Rnis signi�
antly smaller than 0.5, then the repla
ement or removal of one sample point will17



only lead to a similar quality if the new predi
tor fnew
n labels points almost exa
tly like

fn. A 
omplete relabeling will lead to a mu
h larger empiri
al error, be
ause most of thesample remains the same, and the labels for those points are �xed. For 
lustering, this isnot the 
ase. There might be an almost equally good grouping for whi
h a large numberof points is relabeled, so fn and fnew
n di�er signi�
antly. Uniform stability, de�ned withrespe
t to the loss, is 
losely related to the 
onvergen
e of Qn(f) to Q(f) [e.g. S
hölkopfand Smola, 2002, Thm. 12.3℄. For 
lustering, however, 
onsisten
y and fast 
onvergen
eof Qn(f) to Q(f) do not say anything about the stability measured on fn(X) dire
tly.

Figure 1.1.3: Symmetri

lusters: At least two par-titions of this data set mayoptimize a 
lustering 
rite-rion: Cutting the set hor-izontally or verti
ally inthe middle. If labels aregiven (di�erent for x and o-points), then there is onlyone optimal labeling.

There may be several, very di�erent almost-minimizers of thequality fun
tion, and hopping from one to the other will nota�e
t the quality value signi�
antly. This may happen if thereis symmetry in the data [Ben-David et al., 2006℄, as in Fig-ure 1.1.3. Ben-David et al. [2007℄ show that if there are mul-tiple optimal solutions, then the di�eren
e between two 
lus-terings returned by the k-means algorithm for di�erent inputsamples from the same distribution does not 
onverge to zeroas n → ∞. Rakhlin and Caponnetto [2006℄ study the num-ber of sample points that may be repla
ed in k-means for thesolution to remain stable: if there is a unique optimum for
Qn, then all points 
an be repla
ed, and otherwise Ω(

√
n).For the ERM prin
iple with supervised learning, Caponnettoand Rakhlin [2006℄ show that under 
ertain assumptions thediameter of the set of ε-minimizers of Qn with ε = o(1/

√
n)goes to zero as the sample grows, and hen
e it be
omes lessand less likely that the algorithm will jump to a di�erent partof F , 
hanging the predi
tor signi�
antly. Note however, thatthey only 
onsider the 
ase that sample points are added, andnot that the entire training sample is repla
ed. Referring to�supervised ERM�, they also 
ite Lee et al. [1996℄ that the ex-isten
e of di�erent minimizers of Q seems to be a property of di�
ult learning problems.Note however, that 
onsisten
y as we de�ned it above for 
lustering, implies, like in
lassi�
ation, that in the limit, we will get a �globally good� partition, as measured by

Q. �Over�tting� 
an happen in 
lustering as in 
lassi�
ation. A simple example is thefollowing [Bube
k and von Luxburg, 2007℄: Let X = [0, 1]∪ [2, 3], that means two �obvious�
lusters [0, 1] and [2, 3], and the probability be the normalized Lebesgue measure on X(Figure 1.1.4(a)). The similarity fun
tion s : X ×X → [0, 1] indi
ates the similarity betweentwo points as follows:
s(Xi, Xj) =

{
1 if both Xi, Xj ∈ [0, 1] or both Xi, Xj ∈ [2, 3]

0 otherwise.A 
lustering f assigns the points Xi ∈ X to 
lusters C0 and C1. We measure 
luster qual-ity via the between-
luster-similarity whi
h 
overs the similarities of points from di�erent
lusters:
Q(f) =

∫

X∈C0

∫

Y ∈C1

s(X, Y )dP (Y )dP (X)

Qn(f) =
1

n(n − 1)

∑

Xi∈C0∩Zn

∑

Xj∈C1∩Zn

s(X, Y ).18
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(b) Sample points {X1, . . . , X10} from
X with over�tted fn (see text)Figure 1.1.4: Over�tting example for 
lusteringIn the estimator Qn, we only sum over sample points from the training sample Zn =

{X1, . . . , Xn}. As fun
tion spa
e F we allow any measurable partition. We may also addthe 
onstraint that the 
luster sizes should not be smaller than a �xed ε < 0.5. An optimizerof Q on X is
f∗(X) =

{
0 if X ∈ [0, 1]

1 if X ∈ [2, 3],with Q(f∗) = 0. De�ne another partition fn, illustrated in Figure 1.1.4(b):
fn(X) =





0 if X ∈ Zn ∩ [0, 1]

1 if X ∈ Zn ∩ [2, 3]

0 if X ∈ [0, 0.5] \ Zn

1 if X ∈ (0.5, 1] \ Zn or X ∈ [2, 3].It is straightforward to 
ompute that Qn(fn) = 0, so fn is a minimizer of Qn. However,
Q(fn) = 1/16 for any �nite n, so Q(fn) 9 Q(f∗). Therefore, for su
h a ri
h fun
tion 
lass
F , we may get a globally bad 
lustering even with large training samples.1.1.3 SLT to remedy NP-hardnessThe two previous se
tions showed two di�erent approa
hes to 
lustering: 
ombinatorialoptimization and statisti
al learning theory. The former seeks to optimize Qn, an often NP-hard problem. From the perspe
tive of SLT, this is usually not the best thing to do, be
auseit 
orresponds to allowing an exponentially large and ri
h F . Then, Q(fn) and Q(f∗) maydi�er greatly, so we over�t. In addition, the NP-hardness is usually remedied by heuristi
sand relaxations that often do not provide any theoreti
al guarantees on the solution. Instead,we may simplify the problem in the �avor of SLT by redu
ing the 
omplexity of F ormodifying the sele
tion of fun
tions by a 
omplexity 
riterion. In the following, we attempttwo su
h approa
hes: (i) modifying Qn by the addition of a margin (Chapter 2), and (ii)restri
ting F to a polynomial size, su
h that the sear
h through all 
andidate fun
tions isfeasible in polynomial time (Chapter 3). 19



1.2 Ingredients of 
lustering algorithmsIn the following, we outline some basi
 ingredients for 
ombinatorial 
lustering algorithms.One basi
 problem is the de�nition of a good 
lustering. To this end, a vast number of
lustering quality fun
tions have been introdu
ed. We des
ribe a small sele
tion of su
h
riteria in Subse
tion 1.2.1. To apply a graph-based algorithm on data given in 
oordinates,we must �rst 
onstru
t a graph that represents the similarity stru
ture of the data. Sub-se
tion 1.2.2 summarizes several possibilities to 
onstru
t similarity graphs from su
h data.Subse
tion 1.2.3 mentions some further questions.Before pro
eeding, let us review some notation. We are seeking K 
lusters C1, . . . , CK ⊆
V in a similarity graph G = (V, E) with nodes V and edges E that represents the n samplepoints. The fun
tion w des
ribes the edge weights: w(Xi, Xj) is the weight of edge (Xi, Xj),and w(Ci, Cj) is the sum of the weights of the edges 
onne
ting Ci and Cj . As usual in setnotation, Ci = V \ Ci is the 
omplement. All the notation is summarized again in theAppendix.1.2.1 Quality fun
tions for 
lusteringThere is no general obje
tive measure unifying all ideal properties of a 
lustering. Dependingon the data set and the spe
i�
 appli
ation at hand, 
riteria for a �good� or �reasonable�
lustering may vary. In addition, 
on
eptual and algorithmi
 issues 
ome into play. Someintuitive properties are en
ountered repeatedly in the de�nitions of 
lusters in a data set:DIS The similarity of points from di�erent 
lusters should be low. By the inverse relationof distan
e and similarity, 
lusters should be far apart. As edge weights representsimilarities, this means the sum of the edge weights between 
lusters should be low.CLO Points in the same 
luster should be similar or 
lose to ea
h other. This 
riterion 
anbe 
aptured by the sum of the similarities within the 
lusters.BAL Clusters should have at least a minimal size or should all have similar sizes (balan
ing
riterion).In the light of probability distributions underlying the data, the above 
riteria mean thatbetween 
lusters, there should be a region of low probability density, whereas the densitywithin the 
lusters should be signi�
antly bounded away from zero and, integrated over theregion of the 
luster, about equal for all 
lusters.Here, we assume to have K disjoint 
lusters Ci, V =

⋃̇K

i=1Ci.Min
utThe Minimum Cut 
riterion 
aptures the dissimilarity 
riterion (DIS) of our list above viathe sum of between-
luster similarities. It is the sum of the edge weights between 
lusters,that means the sum of the edges that are 
ut when the graph is partitioned into the 
lusters:
Mincut(C1, . . . , CK) =

k∑

i=1

w(Ci, Ci).Finding the minimum 
ut is a relatively easy 
ombinatorial problem, and there exist a num-ber of e�
ient polynomial-time algorithms [see e.g. Stoer and Wagner, 1997, and referen
es20



therein℄. It 
an e�
iently be solved via its dual problem, the Maximum Flow problem [Pa-padimitriou and Steiglitz, 1982, Se
. 6.1℄. A number of su
h �ow algorithms are presentedin Ahuja et al. [1993, Ch. 7℄, among them one with a 
omplexity of O(n2
√
|E|).Limited to between-
luster edges, the Min
ut 
riterion often favors to 
ut o� a singlenode. This tenden
y, however, 
ontradi
ts the balan
e 
riterion of 
luster sizes (BAL).Hen
e, a number of others 
riteria have been designed to remedy this la
k.Bring in 
luster sizes: RatioCut and N
utTwo 
riteria that 
ombine between-
luster similarities (DIS) as well as the size of the 
lusters(BAL) are RatioCut and Normalized Cut (N
ut). They sum up the ratio of the two 
riteriafor ea
h 
luster.RatioCut, �rst introdu
ed by Hagen and Kahng [1992℄, measures 
luster size by thenumber of nodes in the 
luster:

RatioCut(C1, . . . , CK) =

K∑

i=1

w(Ci, Ci)

|Ci|
.Shi and Malik [2000℄ 
rafted an analogous 
riterion, N
ut, where 
luster size is deter-mined by the volume, that is the a

umulated degrees of the nodes in a 
luster:

Ncut(C1, . . . , CK) =

K∑

i=1

w(Ci, Ci)

vol(Ci)For both 
riteria, note that, under the 
onstraint that ∑i xi should be 
onstant, the sum∑K
i=1 1/xi is minimal if all xi equal. Thus, both 
riteria aim to balan
e 
luster sizes whilesimultaneously punishing to 
ut through densely 
onne
ted parts of the graph.The N
ut obje
tive has an additional interpretation with respe
t to random walks ongraphs [Meila and Shi, 2001℄. It is the probability of transferring from one 
luster to theother: Ncut(C, C) = p(C|C)+p(C|C), where p(C|C) is the probability of jumping from a nodein 
luster C to one in C when starting in the stationary distribution. This means we favora partition in whi
h we remain longest in one 
luster by expe
tation.Despite their pra
ti
al appli
ability, there is a drawba
k to the ratio 
riteria. The in
lu-sion of the balan
e 
riterion renders them NP hard. Wagner and Wagner [1993℄ show thatan additional 
riterion on 
luster sizes (|Ci| ≥ f(|V |) for 
ertain fun
tions f) puts the 
utproblem in NP. Papadimitriou proved N
ut to be NP-
omplete [Shi and Malik, 2000℄.Nevertheless, the relaxed versions of the ratio 
riteria are solved e�
iently by spe
tral
lustering (see von Luxburg [2006℄ for details about spe
tral 
lustering). RatioCut leads tounnormalized spe
tral 
lustering, and N
ut to the normalized version. Even though thesealgorithms are widely used in pra
ti
e, there is no general guarantee on the distan
e of theirsolution to the optimum. Several other relaxations exist [von Luxburg, 2006℄, but there isno e�
ient approximate balan
ed graph 
ut with a goodness up to a 
onstant fa
tor. Infa
t, the approximation problem itself is NP hard [Bui and Jones, 1992℄.The ratio 
riteria are 
losely related to graph-theoreti
 properties. Consider K = 2
lusters C and C. Then Lovász [1993℄ de�nes the 
ondu
tan
e for an unweighted graph asthe N
ut:

Φ = min
C

vol(G)
w(C, C)

vol(C) vol(C)
= min

C

((vol(C) + vol(C))w(C, C)

vol(C) vol(C)
.He summarizes results about relations to the eigengap of the graph Lapla
ian and an ap-proximation of Φ via multi
ommodity �ows, 
lose to a fa
tor of O(log n). In the literature,21



the above de�nition is also known as the 
ondu
tan
e of the 
ut (C, C), whereas the 
ondu
-tan
e of a graph is de�ned only as the larger of the two summands [Rubinfeld, 2006℄, as inBollobás [1998℄, Chung [1994℄, for example:
hG = min

C

|E(C, C)|
min(vol(C), vol(C))

,where E(C, C) is the set of edges between C and C, even for weighted graphs. Hen
e thenumerator di�ers from the N
ut summand for weighted graphs. This ratio is also referredto as Cheeger 
onstant. It 
an be bounded by the se
ond smallest eigenvalue λ2 of thenormalized Lapla
ian, 2hG ≥ λ2 ≥ hG/2 [Chung, 1994℄. The 
orresponding eigenve
tor isused for the partition in spe
tral 
lustering. The isoperimetri
 number [Chung, 1994℄ is theanalogue for RatioCut, related to the eigenvalues of the unnormalized Lapla
ian:
h′

G = min
C

|E(C, C)|
min(|C|, |C|) .Within-
luster similarityThe minimization of the 
ut and maximization of 
luster volumes favored by N
ut simulta-neously maximizes within-
luster-similarities (CLO). This is easy to see by rewriting

∑

Xi,Xj∈C

w(Xi, Xj) =
∑

Xi∈C,Xj∈V

w(Xi, Xj)−
∑

Xi∈CXj∈C

w(Xi, Xj) = vol(C)−w(C, C). (1.2.1)There are, however, also dire
t 
riteria to optimize the similarities within 
lusters byminimizing distan
es. The Within-sum-of-squares (WSS) sums the (Eu
lidean) distan
e ofthe points in a 
luster to the respe
tive 
luster 
enter, punishing the within-
luster s
atter.
WSS(C1, . . . , CK) =

1

|V |

K∑

i=1

∑

Xj∈Ci

‖Xj − ci‖2,where ci = 1/|Cj|
∑

Xj∈Ci
Xj is the 
enter of 
luster Ci. The resulting partitions are Voronoitessellations around the 
enters. The standard algorithm to optimize WSS is the k-meansalgorithm [see e.g. Hastie et al., 2001, Se
. 14.3.1℄. Analogous 
riteria repla
e the 
enters bymedians, su
h as the obje
tive of the k-medians algorithm. Other distan
es lead to 
lustersof di�erent shapes.Both the between- and within-
luster similarities (BW) are integrated in ratios by theMinMaxCut 
riterion by Ding et al. [2001℄, 
onsidering 
riteria DIS and CLO:

BW(C1, . . . , CK) =
K∑

i=1

w(Ci, Ci)∑
Xs,Xt∈Ci

w(Xs, Xt)
.Its solutions resemble those of N
ut, be
ause of the 
orresponden
e expressed in Equa-tion (1.2.1).1.2.2 Similarity graphs: from 
oordinate data to graphsSome of the 
riteria above refer to 
lusters as results of a graph 
ut, and thus lead to graph
ut algorithms. Similarity graphs make su
h algorithms appli
able to 
oordinate data.22



For their 
onstru
tion from 
oordinate data, we assume to be given a similarity fun
tion
s : Rd × Rd → R+. One su
h fun
tion is the Gaussian kernel:

s(Xi, Xj) = exp

(
−‖Xi − Xj‖2

2σ2

)
. (1.2.2)The data points make the nodes of the graph. We 
an 
onne
t them in a number of ways[see e.g. von Luxburg, 2006℄. One possibility is the fully 
onne
ted graph, where the edgebetween Xi and Xj has weight s(Xi, Xj). For 
omputational and other reasons, a restri
tionto a subset of these edges makes sense. For an ε-neighborhood graph, a node only retainsthe edges to nodes at a distan
e of less than ε, usually with unit edge weight. For a k-nearestneighbor graph, we set edges from a node to its k nearest neighbors, usually with the edgeweight de�ned by s. In a mutual k-nearest neighbor graph, an edge (Xi, Xj) only exists if

Xi is among the k nearest neighbors of Xj and vi
e versa.The 
onstru
tion of any of these similarity graphs in
ludes parameters: the similarityfun
tion and its parameters (su
h as the width σ), the neighborhood range ε or the numberof neighbors k. The appropriate 
hoi
e of these parameters may greatly in�uen
e the resultand is another �eld of study.In the experiments in Chapters 2 and 3, we mostly use k-nearest neighbor graphs andthe Gaussian kernel as a similarity fun
tion.1.2.3 Other questionsImportant questions in 
lustering are the de�nition of a �good� 
lustering, the 
orrespondingquality 
riterion, its e�
ient optimization, and theoreti
al guarantees of the algorithm.Furthermore, the 
hoi
e of the parameters for similarity graphs raises several questions. Inaddition, resear
h has been devoted to the question of how to properly evaluate a 
lusteringor 
lustering algorithm. Another important question is the number K of 
lusters we assumein the data. The 
hoi
e of K has been related to the eigengap of the graph Lapla
ian orstability, to name two 
riteria [
f. referen
es in von Luxburg, 2006℄. In the following, weassume that K has been �xed in advan
e.Apart from these 
hoi
es, algorithmi
 questions arise: what is a good and e�
ient methodto minimize the obje
tive? Approa
hes range from 
onstrained optimization problems andtheir relaxations, greedy approa
hes, and exa
t 
ombinatorial methods su
h as bran
h andbound, to name a few.
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Chapter 2First approa
h: MarginOne strategy to avoid over�tting is the introdu
tion of a �penalty term� to make the al-gorithm prefer spe
i�
 types of fun
tions. Here, we favor fun
tions that are �robust� toperturbations in the training data: if the edge weights are perturbed by a limited amount,then the 
hosen partition will still be a good one. This approa
h is similar to the 
on
ept ofa margin for Support Ve
tor Ma
hines, seen from a robustness point of view. We will de�neseveral variations of margins on graphs and illustrate their behavior on toy examples: thealternatives behave roughly similar, but normalization 
an make a di�eren
e. In addition,the margin de�nes equivalen
e 
lasses of partitions.An in
lusion of the margin in the obje
tive results in a mixed integer linear program.Motivated by the Max�ow-Min
ut duality, we will solve it via a network �ow approa
h.For simpli
ity, we fo
us on bipartitions (K = 2) in this 
hapter. We start with a shortintrodu
tion to the 
on
ept of margins for linear 
lassi�ers in Se
tion 2.1, before we de�nesome margins for graph 
uts in Se
tion 2.2. Se
tion 2.3 introdu
es the resulting optimizationproblem and its dual. Some experiments are des
ribed in Se
tion 2.4, followed by a generaldis
ussion of the approa
h in Se
tion 2.5.2.1 Margins: what and whyThe 
on
ept of a margin is one interpretation of a regularizer or 
omplexity penalizer thatis in
luded in the obje
tive, as suggested in Se
tion 1.1.2. Margins are most well-known inthe 
ontext of linear 
lassi�ers, leading to Support Ve
tor Ma
hines (SVMs). Hen
e, for anintrodu
tion, we will �rst fo
us on margins of linear 
lassi�ers, in the 
ase when the data isseparable. An extension to the non-separable 
ase are soft margin hyperplanes, des
ribedin S
hölkopf and Smola [2002, Se
. 7.5℄.For a linear 
lassi�er, the geometri
al margin is the distan
e of the separating hyperplaneto any sample point. Let the hyperplane be hw,b = {X ∈ X | 〈w, b〉+b = 0}. The geometri
almargin is then formally de�ned as [S
hölkopf and Smola, 2002, Def. 7.2℄
ρ(w, b) = min

Xh∈hw,b,1≤i≤n
‖Xi − Xh‖ = min

i

Yi(〈w, Xi〉 + b)

‖w‖ .The large margin prin
iple suggests to 
hoose the hyperplane with the largest margin. For
anoni
al hyperplanes (mini |〈w, Xi〉 + b| = 1), the margin is ρ = 1/‖w‖. Thus, we seek tominimize the norm of w for regularization. This is the basis of SVMs.25



Figure 2.1.1: Finding the maxi-mum margin is equivalent to �nd-ing the 
losest points in the 
on-vex hulls of the 
lasses. (Figureadapted from [Bennett and Bre-densteiner, 2000℄)
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More general is the de�nition of a fun
tional margin of a predi
tor f , where we thresholdat zero [Cristianini and Shawe-Taylor, 2000, p. 159℄. The margin of one example (Xi, Yi) is
ρ(Xi) = Yif(Xi). If ρ(Xi) > 0, then the point is 
lassi�ed 
orre
tly. The margin of f is theminimal margin of the sample Zn:

ρ(f,Zn) = min
Xi∈Zn

ρ(Xi).For linear 
lassi�ers, this is equivalent to the geometri
al margin but without normalizationby ‖w‖.The geometri
al margin may also be seen from a dual viewpoint: �nding the maximummargin between two 
lasses A, B is equivalent to �nding the two 
losest points, where oneis in ea
h 
onvex hull of one 
lass (derived by Bennett and Bredensteiner [2000℄ from KKT
riteria, Zhou et al. [2002℄ via a geometri
 approa
h). Figure 2.1.1 illustrates the equivalen
e.The separating hyperplane is orthogonal to the line 
onne
ting the two 
losest points from
A and B, it bise
ts this line in the middle.Alternatively, one 
an view the situation from the perspe
tive of supporting hyperplanes.Bennett and Bredensteiner [2000℄ show the equivalen
e for b = 0. Consider two parallel hy-perplanes, normal to w, that we move apart until they tou
h the sets A and B, respe
tively.That means it is 〈x, w〉 ≥ β for points in 
lass B and 〈x, w〉 ≤ α in 
lass A with pointsfrom ea
h 
lass ful�lling the 
ondition with equality. To �nd maximally distant su
h hy-perplanes, we maximize the distan
e (β − α)/‖w‖ with respe
t to w, ending up with theSVM optimization problem. The best 
lassi�er will be the hyperplane exa
tly between thetwo supporting ones. An analogous interpretation exists for soft margin SVMs: try to �ndthe 
losest points in the redu
ed 
onvex hulls of the 
lasses. The redu
ed 
onvex hull onlyallows a fa
tor smaller than µ for ea
h point in the linear 
ombination and 
orresponds tothe dual 
on
ept of enlarging the margin via sla
k variables [Bennett and Bredensteiner,2000, Zhou et al., 2002℄.But what is so desirable about large margins? Three main arguments are detailedin the following: First, the margin makes the 
lassi�er more robust to noise, and also
ompressible, se
ond, it follows �O

am's razor�, and third, it provides theoreti
al guaranteesfor generalization and may be interpreted as regularization.26
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Figure 2.1.2: Illustration of the ra-dius margin bound for SVMs. Thedata is en
losed in the sphere. Amargin of ρ1 allows three partitions,whereas with a larger margin of ρ2only one partition remains. (Figureadapted from [S
hölkopf and Smola,2002, Fig. 5.4℄.)RobustnessIntuitively, a large margin 
lassi�er is one that is most robust to noise in the data. Imagine,for an SVM, that the sample points move about by a 
ertain amount. The 
lassi�er remains
orre
t on the training data as long as no point 
rosses the hyperplane. Hen
e, the separatorwith the largest distan
e to any point is the one providing most su
h �freedom� to the data,de�ned as a movement of radius ρ, while still 
lassifying Zn 
orre
tly [S
hölkopf and Smola,2002, p. 193℄.On the other hand, �x the data points but imagine the hyperplane to rotate by a 
ertainangle, possibly be
ause it was not 
oded with high a

ura
y. The larger the margin, themore it may move without a 
hange in the 
lassi�
ation of the sample points. Hen
e, thelarger the margin, the lower the a

ura
y needed to en
ode the dire
tion w. In this regard,a large margin 
orresponds to better 
ompression [von Luxburg, 2001, Se
. IV.2.1℄.Simpli
ityFurthermore, the 
lassi�er with the largest margin 
orresponds to the simplest one, satisfyingO

am's razor [von Luxburg, 2001, Se
. III.3℄. The Fran
is
an friar William of O
khamstated the �lex parsimoniae� (law of parsimony/su

in
tness): if many theories are available,
hoose the one with the fewest assumptions. The latter is often interpreted as �the simplest�.The explanation of any phenomenon should make as few assumptions as possible, thuseliminate those explanations that do not make any di�eren
e in the observable predi
tionof the hypothesis or theory and only keep the simplest [wikipedia℄.Generalization boundsThe theoreti
ally most interesting aspe
t is the derivation of generalization bounds basedon the margin. Aiming for a large margin 
orresponds to favoring a less 
omplex predi
torthat is less prone to over�tting. For detailed reading, refer to Cristianini and Shawe-Taylor[2000, Se
. 4.3℄, Vapnik [2001, Se
. 10.3℄, and Bartlett and Shawe-Taylor [1998℄.First, the VC dimension (
f. Se
tion 1.1.2) 
an be bounded with respe
t to the marginand the radius R̃ of a sphere 
entered at the origin that en
loses the data. Let F be theset of linear 
lassi�ers of the form f(x) = sgn(〈w, x〉) with ‖w‖ ≤ 1. The subset Fρ ⊆ Fis the subset of su
h 
lassi�ers with a margin of at least ρ on the given training sample
Zn, that means Yif(Xi) ≥ ρ for all (Xi, Yi) ∈ Zn. Then Fρ has a VC dimension of atmost min{R̃2/ρ2, n} + 1 [Bartlett and Shawe-Taylor, 1998℄. In other terms, the larger themargin with respe
t to the spread of the data, the less partitions are possible. Figure 2.1.2illustrates the relation of margin, radius and number of partitions. The �gure also illustratesanother result about margins: The margin over all di
hotomies of k ≤ d + 1 points in Rdis maximized when the points form a regular simplex on the sphere [Hush and Shovel,27



2001℄. The fat-shattering dimension 
an be bounded analogously to the VC dimension:
fatFρ

(ρ) ≤ R̃2/ρ2 [Cristianini and Shawe-Taylor, 2000, Thm. 4.16℄. Note that the margin isa data-dependent measure of 
omplexity. Hen
e, it may lead to a data-dependent Stru
turalrisk minimization, using a stru
ture of fun
tion 
lasses Fρ a

ording to the margin [Bartlettand Shawe-Taylor, 1998℄.The 
omplexity bounds with respe
t to the margin imply generalization bounds involving
ρ and R̃. In the separable 
ase with a linear 
lassi�er (R̂(f) = 0), for instan
e, R(f) grows as
O
(

eR2

nρ2

) [Cristianini et al., 1999, 
iting [Vapnik, 2001℄℄. If there is noise, the bound may alsobe stated in terms of the k-th smallest (point-wise) margin, that means we ignore the k − 1points with smaller margin as outliers. This relaxation worsens the bound by a square rootand an additional summand k/n [Cristianini and Shawe-Taylor, 2000, Thm. 4.19℄,[Bartlettand Shawe-Taylor, 1998℄.The margin also provides an estimation of how benign the data distribution is. If thedata is away from the hyperplane, then fewer examples are needed to estimate the separatorto a given a

ura
y. Benign distributions result with high probability in a small margin[Bartlett and Shawe-Taylor, 1998℄.RegularizationRelated to the bounds, the margin term in the optimization 
riterion may be seen as aregularizer to penalize 
omplexity. The 
riterion for soft margin SVMs with kernels is thenthe sum of an error term and the regularizer ‖w‖2. For many kernels, this regularizermeasures the smoothness of the fun
tion, so smoother (�simpler�) fun
tions are preferred[von Luxburg, 2001, Se
. III.3℄.Some further views of marginsOne interpretation of the margin is that it des
ribes how mu
h the data may be perturbedbefore another predi
tor or solution is better than the 
urrent one. This view draws 
onne
-tions to the notion of stability. Bilu and Linial [2004℄ study the NP-hard Max
ut problemand pose the question whether �stable� instan
es of a problem are easier to solve. Theyde�ne the stability of an optimal solution by the amount that the edges in the graph maybe s
aled before another solution is equally good. In that respe
t, the measure is similar tothe margin 
on
ept outlined above. Stability here is de�ned for an instan
e of the problem(i.e. the graph) and not an algorithm. For instan
es with a 
ertain stability, the Max
utproblem 
an be solved in polynomial time. Hen
e, stability simpli�es the optimization.Our hope is to �nd a margin 
riterion that has the same potential. However, the authorsdistinguish between lo
al and global stability. The former 
onsiders any other solution tobe
ome better, whereas the latter only looks at the possible s
aling of 
urrently 
ut edges atone node, and its potential swap to the other 
luster. Lo
al stability does not imply globalstability and is thus no basis for their polynomial algorithm. Their 
on
ept of distin
tnessalso reminds of a margin: a maximal 
ut is ρ-distin
t if the relative loss of moving anysubset of points a
ross the 
ut is greater than ρ, so there is no solution with a quality withinthe relative range of ρ. Note, however, that all these 
on
epts are merely based on dis
reteoptimization on given samples without any relations to SLT or underlying distributions.Similar ideas to the ones we follow below are suggested by Pel
kmans et al. [2007℄, butwith regard to transdu
tive graph 
uts. They regularize with an average margin, whi
h
orresponds to the Min
ut. The dual of the relaxed version of the resulting optimizationproblem may be interpreted as a �ow problem, similar to our approa
h.28



The large margin prin
iple for SVMs has also been dire
tly extended to 
lustering. For
lustering, this means to �nd a hyperplane that separates the points, but without givenlabels, so the labels are variables as well. Rahimi and Re
ht [2004℄ show that the spe
tralrelaxation of N
ut 
orresponds to a proje
tion of the points into a high dimensional spa
eand the sear
h for a hyperplane in this spa
e with maximum average margin, with an addi-tional balan
e 
onstraint. The margin is a weighted average of the distan
es of the pointsto the plane. The equivalent of the SVM margin, the minimum distan
e to any point, issuggested but not e�
iently solved. Xu et al. [2004℄ revert to a soft margin to solve themax min margin problem as a semide�nite program. The addition of an o�set b for thehyperplane is realized by Valizadegan and Jin [2006℄.The 
on
ept of a large margin 
lassi�er has been extended to metri
 spa
es by vonLuxburg [2001, Ch. III℄ and Hein et al. [2005℄, using Bana
h spa
es, and Lips
hitz fun
-tions as de
ision fun
tions. The Lips
hitz 
onstant is used for regularization. Der and Lee[2007℄ propose a framework for large margin 
lassi�
ation in Bana
h spa
es with semi-innerprodu
ts. In the following, we attempt to apply the margin 
on
ept to 
lustering, based onthe viewpoint of robustness or perturbation of the data points.2.2 In sear
h of a margin for graph 
utsFor 
ompatibility with graph 
ut algorithms, we seek to de�ne a margin for 
lustering interms of graphs. Unlike the extensions mentioned above, we 
annot rely on an obvious dotprodu
t or line separator.The main idea of a margin as above is that it measures the distan
e of a point from the�de
ision boundary�. The latter is though not well-de�ned for 
lustering. Hen
e, we revertto the viewpoint of robustness against perturbations and de�ne the margin as the maximumpossible perturbation before a point is better assigned to another 
luster. The viewpointof perturbations motivates a variety of de�nitions of a 
ut margin. On the one hand, theydepend on the 
ut 
riterion. On the other hand, the type of perturbation 
omes into play.No matter if the perturbation is viewed as nodes moving or being resampled, or as a dire
tmodi�
ation of the edge weights, what eventually a�e
ts the 
ut value is the 
hange of edgeweights within and a
ross 
luster limits. So in general, we de�ne the margin of a single nodeas a measure of how mu
h its edge weights need to be perturbed before it will be better toassign it to another 
luster.Formally, we 
onsider a perturbation as an additive 
hange of ε in the weight of a within-
luster or 
ross edge. We �rst de�ne the margin ρ(v) for one node v ∈ V , and then set theglobal margin to the minimum margin of all nodes in the graph. Denote the two 
lustersof a given partition f by A and B, and let v ∈ A. Let fA be the partition equal to f thatassigns v to A, and fB the partition where v is moved to B. The remaining assignmentsremain un
hanged. Let wε be the edge weights after a 
hange of ε. For the margin, wedetermine how large ε needs to be su
h that fB has a lower 
ut value than fA.We �rst state a normalized margin for Min
ut. For 
ompleteness, a similar 
riterionis given for N
ut. Sin
e the latter leads to a quadrati
 equation, we fo
us on the Min
ut
riterion in the rest of the 
hapter.A further variation of the margin 
on
ept is a soft margin, where some nodes are allowedto have a margin smaller than ρ. This approa
h 
ould be interpreted as putting the ignorednodes in the �ba
kground�. The soft margin is not 
onsidered further in this report.29



Figure 2.2.1: Margin for a 
lique (ea
h node
onne
ted with unit weight to ea
h othernode). The partitions are between 
lusters C1and C2 of size αn and (1 − α)n. Left: Valueof f(α) − λminv∈V ρ(v), where f(α) is the
ut value for a partition with relative 
lustersizes α and 1 − α. The di�erent lines 
or-respond to di�erent relative margin weights
λ/(n − 1). The margin moves the optimumfrom one empty 
luster (α = 0) to balan
ed
lusters (α = 0.5). Right: value of the marginterm −λminv∈V ρ(v). The x axis 
orrespondsto the values of α. 0 0.5 1
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2.2.1 Min
utThe Min
ut 
riterion merely adds the 
ross-
luster edges, so any perturbation of within-
luster edges 
annot a�e
t the 
ut value. The 
ontribution of v to Mincut(w, fA) are theweights of its adja
ent edges to B, w(v,B). fB is better than fA if v is more atta
hed to Bthan to A, so w(v,B) > w(v,A). To obtain a number between -1 and 1, we normalize bythe degree of v:
ρ(v) =

w(v,A) − w(v,B)

w(v, V )
= 1 − 2

w(v,B)

w(v, V )
∈ [−1, 1]. (2.2.1)The Min
ut margin is a measure how relatively strongly a node is atta
hed to its 
luster.Negative values indi
ate that it is better to move v to B. If v is exa
tly in between A and

B, the margin will be zero.Dis
ussionThis margin will favor partitions that only 
ut a small fra
tion of the edge weights adja
entto ea
h node. It ignores, however, the absolute 
ontribution of a parti
ular node to the 
utvalue. This ignoran
e may lead to problems if the node degrees are broadly distributed. Onthe other hand, absolute values are 
onsidered by the Min
ut 
riterion itself, so a 
ombina-tion of both 
riteria might remedy this problem. In part, the question about 
ontributionsleads to the question if all nodes are equally important, or if a node's importan
e dependson its degree.For some graphs, the Min
ut margin in
ludes a balan
ing 
riterion via balan
ing theedge weights. Consider a 
lique. Then the partition with the largest margin will be any onewhere |A| = |B|, with ρ(v) = 0 for ea
h node. Figure 2.2.1 shows how the margin in�uen
esthe optimal partition for a 
lique.Related to the balan
ing, the margin will disfavor partitions where one 
luster 
onsistsof one node only, be
ause the margin for this node will rea
h its minimum of -1.Matrix notationIn terms of matri
es, the above margin is
ρ(V ) = (D−1W (iA − iB)) ⊙ (iA − iB) = diag(iA − iB)D−1W (iA − iB),30



or, based on the se
ond term in (2.2.1),
ρ(V ) = 1 − 2

(
(D−1W (−iB)) ⊙ iA + (D−1W (−iA)) ⊙ iB

)
,where iA and iB are the indi
ator ve
tors for A and B, respe
tively, and ⊙ is the entry-wiseprodu
t. The matrix equations yield a ve
tor whose entries are the margins for all nodes.Here, D is a diagonal matrix where D(j, j) is the degree of node vj and W is the weightmatrix with W (i, j) = w(vi, vj).Relation to other 
riteriaThe idea of looking at relative edge weights within versus between 
lusters is also inherentin other 
ut 
riteria. As an example, the modularity approa
h by Newman [2006℄ 
onsidersentire 
lusters and squares the quantities. Let p(u, v) = w(u, V )w(v, V )/w(V, V ), then themodularity is

Mod(f) =
1

w(V, V )

∑

u,v∈V

[w(u, v) − p(u, v)]δ(f(u), f(v))

=
2(w(A,A)w(B,B) − w(A,B)2)

w(V, V )2
.Furthermore, the normalized Min
ut margin is similar to the idea of the relative net
ontribution ρf (T ) of a group T of nodes to the 
ut, and ρ-distin
tness, both de�ned inBilu and Linial [2004℄. Their relative 
ontribution to Max
ut for a single node (T = {v},

v ∈ A) boils down to
ρf (T ) =

w(v,B) − w(v,A)

min{w(v,A), w(v,B)} .Note that the authors 
onsider Max
ut, hen
e the di�eren
e is reversed. The normalizationis not by degree but by the smaller fra
tion of edges to a 
luster. The great di�eren
ein 
on
ept is that not only single nodes are 
onsidered, but T 
an be any subgroup of
V . Hen
e, distin
tness is a global measure. A 
ut is ρ-distin
t if the 
ontribution of allpossible subgroups is at least ρ. The 
onsideration of all 2n subgroups, however, makes thedistin
tness expensive to 
ompute.Multipli
ative perturbationAlternatively, the perturbation of edge weights 
ould be multipli
ative, as is dis
ussed byBilu and Linial [2004℄. For εw(v,B) to be larger than w(v,A), it must be ε > w(v,A)/w(v,B).If ε < 1, then fB is better than fA already.The multipli
ative perturbation is equal to the 
riterion of lo
al stability in Bilu andLinial [2004℄. A 
ut is γ-lo
ally stable in their sense if γ = 1/ρ for the multipli
ative Min
utmargin.2.2.2 N
utWithout any perturbation, the Normalized Cut value for fA and fB is

Ncut(w, fA) =
w(A,B)w(V, V )

w(A, V )w(B, V )

Ncut(w, fB) =
(w(A,B) − w(v,B) + w(v,A))w(V, V )

(w(A, V ) − w(v, V ))(w(B, V ) + w(v, V ))31



As the edge weights within and between 
lusters are summed up, respe
tively, it is enoughto 
onsider two 
ases: �rst, adding εw to any edge within A and, se
ond, εb to any edgebetween A and B.Changing the within-
luster edges by εw gives
Ncut(wεw , fA) =

w(A,B)(w(V, V ) + 2εw)

(w(A, V ) + 2εw)w(B, V )

Ncut(wεw , fB) =
(w(A,B) − w(v,B) + w(v,A) + εw)(w(V, V ) + 2εw)

(w(A, V ) − w(v, V ) + εw)(w(B, V ) + w(v, V ) + εw)
.Setting Ncut(wεw , fA) = Ncut(wεw , fB) yields a polynomial a(εw)2 + bεw + c = 0 with

a = −w(A,B) + 2w(B, V )

b = −w(A,B)(w(A, V ) + w(B, V ))

+ w(B, V )(2(w(A,B) − w(v,B) + w(v,A)) + w(A, V ))

c = −w(A,B)(w(A, V ) − w(v, V ))(w(B, V ) + w(v, V ))

+ w(B, V )w(A, V )(w(A, B) + w(v,A) − w(v,B)).Analogously, the addition of εb to a 
ross edge leads to
Ncut(wεb , fA) =

(w(A,B) + εb)(w(V, V ) + 2εb)

(w(A, V ) + εb)(w(B, V ) + εb)

Ncut(wεb , fB) =
(w(A,B) − w(v,B) + w(v,A))(w(V, V ) + 2εb)

(w(A, V ) − w(v, V ))(w(B, V ) + w(v, V ) + 2εb)and a quadrati
 polynomial with
a = −2(w(A, V ) − w(v, V )) + (w(A,B) + w(v,A) − w(v,B))

b = −(w(A, V ) − w(v, V ))(w(B, V ) + w(v, V ) + 2w(A,B))

+ (w(A,B) + w(v,A) − w(v,B))(w(A, V ) + w(B, V ))

c = −(w(A, V ) − w(v, V ))w(A,B)(w(B, V ) + w(v, V ))

+ (w(A,B) + w(v,A) − w(v,B))w(A, V )w(B, V ).For the margin of v, set ρ(v) = min{−εw, εb} and the margin of f to ρ(f) = minv∈V ρ(v).Alternatively, one might 
onsider a setting where ε is added to the within-edges and −εto the 
ross edges. This setting, however, is even more 
ompli
ated, resulting in a third-orderpolynomial.2.2.3 Illustration of the marginsIn the following, we investigate the behavior of some margins on toy graphs. First, severalmargins are 
ompared with respe
t to their �
riti
al node�, and se
ond, the best 
uts fortwo margins illustrated. In the end, we look at the e�e
t of adding edges to a grid graph.In the �rst experiment, we 
omputed di�erent margins of all possible 
uts of a toy graph.Figure 2.2.2 shows a sele
tion of those 
uts, where the 
luster assignments are indi
ated bynode 
olor, blue or magenta. The node with the smallest margin is marked in red, one withthe largest margin in green. The illustrated margins are:
ρ1 Additive N
ut margin as de�ned in Se
tion 2.2.2.32
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Figure 2.2.2: Illustration of the di�erent margins. One row 
orresponds to one 
ut, 
olumnsto the di�erent margins. The node with the lowest margin is marked in red, one with thelargest margin in green. Margins with odd number have round markers, the others squaremarkers. 33



Figure 2.2.3: The six moststable 
uts are similar forthe additive (ρ5) and mul-tipli
ative (ρ6) Min
ut mar-gins. The node that deter-mines the margin is markedin red.
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ρ2 The same as ρ1, but normalized by the degree of the node, that means divided by w(v, V ).
ρ3 N
ut margin where ε is added to a within edge and simultaneously subtra
ted from a
ross edge. The 
omputation is then analogous to ρ1.
ρ4 The same as ρ3, but normalized by the degree of the node.
ρ5 Additive normalized Min
ut margin as in Equation (2.2.1).
ρ6 Multipli
ative Min
ut margin as des
ribed in Se
tion 2.2.1.In general for this graph, the 
riti
al node determining the margin is the same for thedi�erent margin variations. It 
an vary though, as for instan
e in row four.If one node is 
ut o�, like in row 5, then its margin is the minimum possible for allvariations. For 
ut 2, all margins rea
h their peak and, equally, 
ut 5 a
hieves the lowestvalue for ea
h margin. In between those two, there are di�eren
es in the order, even betweena margin and its normalized form. Hen
e the normalization does in�uen
e the margin value.Note also that the lowest 
ut value (row 4) does not 
orrespond to the one with the largestmargin.The node with the lowest margin is the same for the normalized and unnormalizedversions of the margin in all examples (red markers, square and 
ir
le 
oin
ide). The pointwith the largest margin, however, di�ers in one example for the additive N
ut margin ρ3with simultaneous addition and subtra
tion. In other graphs (not shown here) the nodewith the lowest margin varied as well, also for ρ1 and ρ2. This divergen
e points to the fa
tthat normalization by node degree 
an make a di�eren
e, not only with regard to the 
hoi
eof the partition, but also with regard to whi
h node is 
riti
al.34



nodes in 
luster A (i) (ii) (iii)
ut ρ5 ρ6 
ut ρ5 ρ6 
ut ρ5 ρ6verti
al 
ut1, 5, 9, 13 4.0 0.00 1.00 4.0 0.27 1.75 8.0 -0.07 0.881, 5, 9, 13, 2, 6, 10, 14 3.0 0.46 2.67 3.0 0.57 3.67 7.0 0.47 2.75
1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 4.0 0.00 1.00 4.0 0.27 1.75 8.0 -0.07 0.88diagonal 
ut4 2.0 -1.0 0.00 3.0 -1.00 0.00 4.0 -1.00 0.003, 4, 8 3.5 -0.27 0.57 5.5 -0.47 0.36 7.5 -0.47 0.362, 3, 4, 7, 8, 12 5.5 -0.46 0.38 8.5 -0.60 0.25 11.5 -0.60 0.25diagonal 
luster � one �row�1, 6, 11, 16 11.0 -1.00 0.00 13.0 -1.00 0.00 15.0 -1.00 0.005, 10, 15 9.0 -1.00 0.00 10.0 -1.00 0.00 11.0 -1.00 0.009, 14 5.5 -1.00 0.00 6.5 -1.00 0.00 7.5 -1.00 0.00diagonal 
luster � two �rows�1, 5, 6, 10, 11, 15, 16 9.0 -0.46 0.38 12.0 -0.46 0.38 15.0 -0.50 0.335, 9, 10, 14, 15 7.5 -1.00 0.00 9.5 -0.60 0.25 11.5 -0.60 0.25�around the 
orner�1 2.0 -1.00 0.00 3.0 -1.00 0.00 4.0 -1.00 0.001, 2, 5, 6 3.0 0.14 1.33 5.0 0.07 1.14 7.0 0.000 1.001, 2, 3, 5, 6, 7, 9, 10, 11 6.0 -0.14 0.75 9.0 -0.33 0.50 12.0 -0.14 0.75Table 2.1: Cut and margin values for the gridFigure 2.2.3 displays the six 
uts with the largest margin for the normalized additive(ρ5) and multipli
ative Min
ut margin ρ6. As above, the �
riti
al� node determining themargin is marked by a red 
ir
le. As we often observed with the toy examples, the best 
utsand 
riti
al nodes 
oin
ide for both margins. The large margin 
uts 
orrespond to what onevisually 
onsiders as 
lusters.The �gure shows that several 
uts 
an have the same margin. Apart from the assign-ment of the 
riti
al node and its neighbors, the partition 
an vary as long as no othernode gets a lower margin. Hen
e, the margin values de�ne equivalen
e 
lasses of parti-tions with the same margin. The lower the de�ning limit margin, the larger the 
lass 
anbe (and the higher the risk of potential over�tting). Within one su
h 
lass, the parti-tion with the lowest 
ut value is preferable, that is the one minimizing the empiri
al risk.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 2.2.4: Grid graph
These ideas remind of the 
on
ept of Stru
tural RiskMinimization (
f. Se
tion 1.1.2). Whi
h su
h equiva-len
e 
lass is 
hosen in the end depends on the relativeweighting of 
ut value and margin.Note that the equivalen
e 
lasses di�er in the as-signment of densely 
onne
ted sub-
lusters whose di-vision results in a margin lower than the one de�ningthe 
lass. Thus, the di�eren
e of the partitions withinone 
lass may hint to the a
tual number of 
lusters,and to densely 
onne
ted (sub-)
ommunities withinlarger 
lusters.For the behavior on one spe
ial graph, 
onsidera grid as in Figure 2.2.4. The dashed edges have a35



weight of 0.75, the bla
k edges weigh 1.0. Variations are (ii) the addition of bla
k edges
(1, 13), (2, 14), (3, 15), (4, 16), and (iii) the additional addition of edges (1, 4), (5, 8), (9, 12),
(13, 16). Table 2.1 displays the 
ut and margin values for several possible partitions. Intu-itively, the squares of four nodes in ea
h 
orner ea
h form a 
luster, so one would partitionsu
h that only dashed edges are 
ut.Three observations 
at
h the eye: First, two 
uts 
an have the same 
ut value, butdi�erent margins. A verti
al 
ut through the middle or around one square for (i), forinstan
e, have the best 
ut values, but the verti
al partition wins by the margin. Se
ond,in the end, for all grids, the balan
ed verti
al partition is the best by the margin. This
orresponds to the intuition, be
ause the added edges strongly 
onne
t the squares, 
reatingtwo groups for (ii). In (iii), all squares are 
onne
ted equally to ea
h other. For su
h regularly
onne
ted graphs, the margin indu
es a balan
ing of 
luster sizes to redu
e the number of
onne
tions of a single node to the other 
luster (see also Subse
tion 2.2.1). Third, theexample shows that margin values 
an in
rease and de
rease with the addition of edges.2.3 Optimization problemLet us now modify Qn by a margin 
riterion and solve the resulting optimization problem.In the following, we fo
us on the additive Min
ut margin ρ5. The 
riterion of the absolute
ut value, whi
h is the obje
tive of the original Min
ut problem, is extended by the margin,weighted by a fa
tor λ. Thus, the goal is to minimize

min
f

Cut(f) − λρ(f) ≡ min
f

MCM(f) (2.3.1)for the given graph, subje
t to 
ertain 
onditions given, for example, by the edge weights.We will solve this problem as a Network Flow, based on the Min
ut�Max�ow duality [Eliaset al., 1956, Ford and Fulkerson, 1956℄.The equations are stated in terms of ve
tors and matri
es. Let the given graph G =
(V, E) have n nodes and m edges. The partition f is an indi
ator ve
tor in {0, 1}n for the
lusters C0 and C1. Let A ∈ {−1, 0, 1}n×m be the node�edge adja
en
y matrix and w ∈ Rm

+the weight ve
tor. The matrix A has a 
olumn for ea
h edge ej = (vi, vk), with entries
A(i, j) = −1 and A(k, j) = 1.The following outline is based on Papadimitriou and Steiglitz [1982℄.2.3.1 The Max�ow Problem and its dualIn the Maximum Flow problem, the graph may be viewed as an ele
tri
al 
ir
uit, a systemof water pipes or roads on whi
h goods are transported. The goal is to assign �ow valuesto the edges su
h that the total �ow from a distinguished node s, the sour
e, to the node
t, the sink, is maximized. The �ow in an edge may not ex
eed the 
apa
ity given by theedge weight (
apa
ity 
onstraint), and the total in�ow to a node must equal the �ow outof the node (�ow 
onservation), ex
ept for the sour
e and sink. In addition, �ow 
annot benegative.In matrix notation, we seek to �nd a �ow assignment h ∈ Rm su
h that the �ow v from
s to t is maximized: 36



max
h,v

v (2.3.2)s.t. Ah + cv = 0 (�ow 
onservation)
h ≤ w (
apa
ity 
onstraint)
h ≥ 0.The variable c indi
ates sour
e and sink:

c(i) =





−1 for i = s

1 for i = t

0 otherwise.It helps to 
apture the �ow from s and into t.The dual of problem (2.3.2) is known as the Minimum Cut problem:
min
γ,f

γ⊤w (2.3.3)s.t. A⊤f + γ ≥ 0 (let γ mark 
ross edges)
c⊤f ≥ 1 (separate s and t)

γ ≥ 0.The se
ond 
onstraint, −f(s) + f(t) ≥ 1, for
es f(s) = 0 and f(t) = 1, so sour
e and sinkare assigned to di�erent groups or 
lusters. The �rst 
onstraint demands for ea
h edge (i, j)that f(i) − f(j) + γ(i, j) ≥ 0: if f(i) = 0 and f(j) = 1, then γ(i, j) must be at least one,otherwise it 
an be zero. Looking at the obje
tive, γ should be as small as possible. Hen
e,
γ(i, j) = 1 for all edges from nodes in 
luster with label zero to nodes in the 
luster labeledone, and otherwise γ = 01. As a result, the obje
tive sums the weight of all su
h 
ross edgesbetween the 
lusters. Dire
tion does play a role here, but for an undire
ted graph simplyrepla
e undire
ted edges {i, j} by edges in both dire
tions, (i, j) and (j, i).For the Max�ow problem, there exist e�
ient polynomial-time �ow algorithms. Via thedual, these algorithms also serve to e�
iently �nd the minimum 
ut.2.3.2 Extension to the marginNow we add the margin 
onstraint to the Min
ut problem, and derive its new dual to endup with a �ow problem whi
h is potentially easier to solve, by modi�
ations of existingalgorithms.Re
all that the margin for node i in 
luster C0 is

ρ(i) =
w(i, C0) − w(i, C0)

d(i)
,where d(i) = w(i, V ) is the degree. The margin for the partition is ρ(f) = mini∈V ρ(i).1Pra
ti
al note: Without integer 
onstraints, Matlab's linprog returned non-integer results for f and γif there were multiple minimal 
uts. The obje
tive value may still be 
orre
t, though, sin
e the output maybe a linear 
ombination of the two optimal solutions.37



Extended Min
utThe extended Min
ut in
ludes the weighted margin ρ ∈ [−1, 1], with a fa
tor λ ∈ R:
min
γ,f,ρ

γ⊤w−λρ ≡ min
γ,f,ρ

MCM(f) (2.3.4)s.t. A⊤f + γ ≥ 0 (let γ mark 
ross edges)
c⊤f ≥ 1 (separate s and t)

γ ≥ 0

1n − 2W̃ (I)γ ≥ ρ1n (margin 
onstraint 1)
1n − 2W̃ (O)γ ≥ ρ1n (margin 
onstraint 2)Here, 1n denotes the n× 1 ve
tor of all ones. The matri
es W̃ ∈ Rn×m

+ give the normalizededge 
apa
ities: outgoing: W̃
(O)
i,(j,k) =

{
w(i,k)
d(i) if j = i

0 otherwise.in
oming: W̃
(I)
i,(j,k) =

{
w(j,i)
d(i) if k = i

0 otherwise.If γ(i, j) indi
ates the edges from nodes labeled 0 to nodes labeled 1, that means 
luster C0to C1, then the last pair of 
onstraints en
odes the margin 
riterion. Consider i ∈ C0, then
1 − 2

∑

j:(i,j)∈E

γ(i, j)W̃ (O)(i, (i, j)) = 1 − 2
∑

j:(i,j)∈E∩(C0×C1)

γ((i, j))w(i, j)/d(i)

=
(w(i, C0) + w(i, C1)) − 2w(i, C1)

d(i)

=
w(i, C0) − w(i, C1)

d(i)des
ribes the margin for node i. For i ∈ C1, however, the sum above will be one, be
ause γis zero for edges out of C1. The other 
onstraint takes 
are of nodes in C1:
1 − 2

∑

j:(i,j)∈E

γ(i, j)W̃ (I)(j, (i, j)) = 1 − 2
∑

j:(j,i)∈E∩(C0×C1)

γ((j, i))w(j, i)/d(i)

=
(w(i, C0) + w(i, C1)) − 2w(C0, i)

d(i)

=
−w(i, C0) + w(i, C1)

d(i)
, (2.3.5)if i ∈ C1. As above, a vertex i ∈ C0 does not have any in
oming edges (j, i) with γ(j, i) = 1,so the term (2.3.5) will be one for that node, the maximum possible margin.38



Dual: Flow problemTo derive the dual (as outlined in Boyd and Vandenberghe [2004, Ch. 5℄), we start with theLagrangian of Problem (2.3.4):
L(f, γ, ρ, v, h, g1, g2, p) = w⊤γ − λρ + h⊤(−A⊤f − γ) + v(1 − c⊤f) − p⊤γ (2.3.6)

+ g⊤1 (ρ1n + 2(W̃ (O))⊤γ − 1n) + g⊤2 (ρ1n + 2(W̃ (I))⊤γ − 1n)

= (w − h − p + 2W̃ (O)g1 + 2W̃ (I)g2)
⊤γ + (−Ah − vc)⊤f

+ (λ + 1⊤
n (g1 + g2))ρ + v − 1⊤

n (g1 + g2)

v, h, g1, g2, p ≥ 0.The 
orresponding dual is
max

v,g1,g2,h
v − 1⊤n (g1 + g2) ≡ max

v,g1,g2,h
v (2.3.7)s. t. h ≤ w + 2((W̃ (O))⊤g1 + (W̃ (I))⊤g2)

Ah + vc = 0

1⊤n (g1 + g2) = λ

h ≥ 0

v ≥ 0

g1, g2 ≥ 0.If the third 
onstraint holds, then the obje
tive be
omes v−λ, the same as in the originalMax�ow problem (2.3.2), be
ause λ is a 
onstant. Analogous to (2.3.2), the above dual maybe interpreted as a �ow problem. Again, h(i, j) is the �ow in edge (i, j), and v the total�ow from s to t. The additional variables g1 and g2 are �sla
k� variables allowing the �owto ex
eed the 
apa
ity on 
ertain edges (�rst 
onstraint). The total sla
k is limited by λ viathe third 
onstraint.Hen
e, the extended �ow problem reads as follows. Maximize the �ow from sour
e tosink, respe
ting �ow 
onservation and edge 
apa
ities. The 
apa
ities may be ex
eeded bya total of λ. The gain in 
apa
ity for the investment g1 (for outgoing edges) or g2 (forin
oming edges) depends on the relative weight of the edge with regard to the degree of itsadja
ent nodes. The �rst 
onstraint states this dependen
e for ea
h edge (i, j):
h(i, j) ≤ w(i, j) + 2

(
w(i, j)

d(i)
g1(i) +

w(i, j)

d(j)
g2(j)

)
. (2.3.8)To maximize the 
apa
ity gain, it is best to in
rease the g on the adja
ent node where theedge has higher relative weight, so it makes a larger part of the node's 
onne
tions. Onthe other hand, the g values may mark an intera
tion of edges: In
reasing g1 on a nodewith many outgoing full edges will in
rease the �ow bound on many su
h edges and hen
ebe very e�e
tive (we get a lot for �paying� one unit), and equally for g2 and nodes withmany in
oming full edges. For the original Max�ow problem, the full edges are the onesthat determine the maximum �ow. In the dual, all 
ut edges are full edges, de�ning theminimum 
ut. Thus, the g variables may be indi
ators for the 
luster borders. Nodes inbetween the 
lusters with lower margin and strong 
onne
tions to the other 
luster mayhave larger g values. Then g is an indi
ator of problemati
 or �di�
ult� nodes.39



2.3.3 Dis
ussionWhat is the gain of a duality formulation as (2.3.4) and (2.3.6)?If the dual is easy to solve, then the primal is, too, be
ause the primal variables maybe obtainable via 
omplementary sla
kness and KKT 
onditions [Boyd and Vandenberghe,2004, Se
. 5.5℄.With binary γ, the extended �ow problem may be solvable in polynomial time via amodi�ed �ow algorithm. A variety and detailed analysis of su
h algorithms is given inAhuja et al. [1993℄. Possibly, one 
ould solve the Max�ow problem �rst, for example witha Pre�ow-Push algorithm, and then investigate where 
apa
ity extensions would be mostuseful. Maybe even a variation of the Network Simplex algorithm may work. On the otherhand, the solution of the Min
ut and Min
ut with margin 
an be very di�erent: Min
utoften 
uts o� one node, whereas the margin prevents su
h behavior. Therefore the Max�owsolution may not be a good starting point for the algorithm. Another problem 
an arisefrom g not being integer. Sometimes s
aling te
hniques are applied for polynomial timealgorithms. A real value of g may be di�
ult to �nd with s
aling algorithms, leading to agreat number of iterations.The total unimodularity of adja
en
y matri
es [Cook et al., 1997, Ch. 6.5℄ 
an give ni
eproperties to network problems using them as 
onstraint matri
es [Ahuja et al., 1993℄, su
has in the original network problems. In the modi�ed problems, the additional 
onstraintmatri
es W̃ (O) and W̃ (I) are not unimodular any more. In fa
t, we 
annot guarantee thatthe optimal solution of the modi�ed problem is integer. This problem a
tually shows up inexperiments and brings up the problem of how to de�ne the partition that is the solution ifthe labels f and γ are non-integer. One solution is to expli
itly put integer 
onstraints onthe labels. Note that these integer 
onstraints make the problem NP-hard.Other problems are easier to ta
kle. Note that the optimization problem requires dis-tinguished, pre-separated nodes s, t. The original 
lustering problem does not in
lude su
hnodes, hen
e di�erent assignments of s and t should be tried. However, there is only apolynomial number of su
h pairs, namely n(n − 1), so even trying all pairs 
an be done inpolynomial time, if the optimization problem 
an be solved in polynomial time.So far, the approa
h only works for bipartitions. To extend it to more 
lusters, one mayre
ursively reapply the algorithm to the identi�ed 
lusters. The re
ursion will, however,probably 
ome with a loss in a

ura
y: there is, for example, no guarantee that the optimalbipartition of three 
lusters will be one 
luster on one side and two on the other instead ofone or more 
lusters being 
ut.2.3.4 Implementation: an odyssey of its ownFor experimental investigation, the modi�ed optimization problems (2.3.4) and (2.3.6) weresolved as linear programs (LP) and mixed integer linear programs (MILP) using the CPLEXsolver [
plex℄.Due to the la
k of a Matlab interfa
e, we 
reated graphs in Matlab and automati
allygenerated the 
orresponding �les in MPS format, for both the Max�ow and Min
ut prob-lems, along with 
orresponding �les 
ontaining the CPLEX 
ommands. Via a shell s
ript,CPLEX was 
alled with these 
ommands. A pearl s
ript helped to read out the CPLEXLog and �lter it for the results, writing them out in a Matlab-readable format.Not further mentioned will be the �ght for li
enses . . .40



2.4 Experimental investigationsThe �rst experiment is an investigation of the in�uen
e of integer 
onstraints to the so-lution, sin
e there is no guarantee for an integer solution any more. In addition, integer
onstraints make linear programs mu
h harder to solve, so that one possibly only gets asuboptimal solution. The se
ond experiment is a test how the weighting of the margin af-fe
ts the solution, and the third experiment illustrates the behavior on random graphs. The
ompli
ations with CPLEX li
enses limited the number of repetitions in the experiments.2.4.1 LP versus MILPIdeally, we would like to have binary labels to assign the nodes to the two 
lusters. However,the modi�ed problems (2.3.4) and (2.3.6) do not guarantee an integer solution. To testthe in�uen
e of integer 
onstraints on the labels, we 
reated random Gaussian graphs andsolved the original Max�ow and Min
ut problems (Eq. (2.3.2) and (2.3.3), respe
tively) aswell as the modi�ed Min
ut and �ow problem. The Min
ut with margin was solved withand without integer 
onstraints on the labels. The experiment was repeated with di�erentrandom graphs and CPLEX used for optimization. As expe
ted, the original and its dual aswell as the modi�ed Min
ut LP and its dual had the same obje
tive values in the end. Thelabels of the modi�ed problem, however, ended up to be non-integer. The integer 
onstraintsresulted in a higher obje
tive, whi
h is less optimal for a minimization problem.Sin
e the ultimate goal is to obtain a 
lustering, solving without integer 
onstraints willlead to the problem of how to infer 
luster assignments from 
ontinuous labels, with therisk of a suboptimal assignment. Hen
e the LP problem is only a relaxation, similar to thespe
tral relaxation from integer to 
ontinuous variables.2.4.2 The in�uen
e of the margin's weightThe next experiment aims to investigate the in�uen
e of the weighting fa
tor λ of the margin.We used seven di�erent graph types from two to four Gaussian 
lusters. Ea
h 
luster had40 or 60 points, sampled from Gaussian distributions with di�erent means and varian
esin two dimensions (see Table 2.2). The sour
e and sink nodes were sampled from di�erentGaussians.graph σ no. of points means varian
es1 0.5 40, 40 µ1 = (0, 0), µ2 = (2, 2) Σ1 = I, Σ2 = (1, 0; r, 1)2 0.45 40, 60 µ1 = (0, 0), µ2 = (2, 2) Σ1 = I Σ2 = (1, 0; r, 1)3 0.5 40, 40 µ1 = (0, 0), µ2 = (2, 3) Σ1 = I Σ2 = (1, 0; r, 1)4 0.5 40, 40 µ1 = (0, 0), µ2 = (2, 2) Σ1 = I, Σ2 = I5 0.5 40, 40, 40 µ1 = (−1.6, 0), µ2 = (1.6, 0),
µ3 = (0,

√
3 · 1.6)

Σ1 = Σ2 = Σ3 = I6 0.4 40, 40, 40, 40 µ1 = (−1,−1), µ2 = (−1, 1),
µ3 = (1,−1), µ4 = (1, 1)

Σi = I7 0.4 40, 40, 40, 40 µ1 = (−1.25,−1.25), µ2 =
(−1.25, 1.25), µ3 = (1.25,−1.25),
µ4 = (1.25, 1.25)

Σi = ITable 2.2: Graphs for the weight experiments. r ∈ [0, 1] is a random number. All graphs arenearest neighbor graphs with 5 neighbors; σ is the parameter for 
reating the edge weights:
exp(−‖x − y‖2/(2σ2)), where x and y are the 
oordinates of the adja
ent nodes.41
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Figure 2.4.1: In�uen
e of λ on the 
lustering for graph types 1 to 7. The number inparentheses is the number of 
lusters in the given graph.
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λ 0.0 1.0 2.0 3.0 3.6
|C0| 119 79 79 104 104
|C1| 1 41 41 16 16
% error 32.5 5.8 5.8 20.0 20.0
Cut(f) − λρ 2.64 3.12 2.95 2.71 2.46
ρ(f) -1.00 0.17 0.17 0.44 0.44
Cut(f) 2.64 3.29 3.29 4.03 4.03Figure 2.4.2: Illustration of the partitions for Graph 5 with varying λ.The optimization was solved for four instan
es of graph type 1 and two instan
es ofea
h other type. The weighting λ was set to {0, 1, 2, 3, w, 5w/n), where w is the averageedge weight. The latter test values take into a

ount that the in�uen
e of λ also dependson the average edge weight, as the edge weights determine the magnitude of the 
ut value.Figure 2.4.1 shows how 
ertain values of the partition develop as λ is in
reased. The valuesare averages over the instan
es. In general, sin
e the solutions are dis
rete, the values 
hangein steps. After the weighting ex
eeds a 
ertain threshold, the solution 
hanges and remainsstable until the next threshold. The threshold depends on the margin and 
ut value of theother solutions.As expe
ted, the higher the weight of the margin, the more it is 
onsidered in theoptimization, and hen
e in
reases with the in
rease of λ. For the original Min
ut (λ = 0),the margin is often negative, as one point is 
ut o�. If the 
ut is weighted highly relativeto the margin, then the partition with the lowest 
ut value is 
hosen. As the importan
eof the margin rises, di�erent solutions with larger margin and higher 
ut value are better,be
ause the margin 
an outweigh the 
ut value with a su�
ient weight.The �gure also shows the relative size of the largest 
luster 
ompared to all points. Itusually de
reases as λ in
reases, indi
ating that the balan
e of 
luster sizes improves. But,43



when the margin weight in
reases further, it may also grow again, if a less balan
ed partitionis more lo
ally stable. Without the margin, Min
ut often leads to solutions where a smallfra
tion of points or even a single node is 
ut o� the rest, su
h that only few edges are 
ut.In su
h a small group, it is however very likely that one node 
ontributes a large share of the
ut edges, leaving it with a very low margin. Hen
e the margin 
riterion leads to a minimumsize of the 
lusters where no node 
ontributes more than a limited part of its edges to the
ut.The �mis
lassi�
ation� was 
omputed as 
lassi�
ation error, if the generating Gaussiandistributions are 
onsidered as 
lasses. Via the balan
ing of 
luster sizes, the margin redu
esthis error in most examples.Figure 2.4.2 illustrates the partitions for one example (graph type 5) with varying λ.The plot on the upper left shows the 
lusters by their generating sour
es. Without margin,one node is 
ut o� the rest. A small weight of the margin, however, 
hanges the optimalsolution to a more balan
ed partition. An in
rease of more than λ = 2 leads to yet anotherpartition that separates a smaller, denser group.In summary, the margin remedies the tenden
y of Min
ut to separate one node o� therest, leading to 
lusters of a minimal size. In addition, the margin favors groups that areseparated and well-
onne
ted within the group.2.4.3 Uniform distribution: in�uen
e of the initialization of sour
eand sinkIn order to investigate the in�uen
e of the initialization, that is the assignment of s and t,we 
reated graphs with n = 80, 100 and 150 nodes from a uniform distribution (3 instan
esfor ea
h number of nodes). Usually not generating distinguishable 
lusters in the graph, theuniform distribution will reveal the e�e
t of the initialization in its extreme. If there are
lusters, the e�e
t might be less strong.The node 
oordinates are in [−1, 1]2, and the sour
e and sink were 
hosen in variouspositions:1. in opposite 
orners: s = (−1,−1), t = (1, 1)2. both 
lose together in one 
orner: s = (−1,−1), t = (−0.95,−0.95)3. s in the 
enter, t in 
orner: s = (0, 0), t = (1, 1)4. both in the middle: s = (0, 0), t = (0.05, 0.05)5. both within opposite quadrants: s = (−0.4,−0.4), t = (0.4, 0.4)6. s in the 
enter, t 
hosen randomly from the sample points7. both 
hosen randomly from the sample points8. in opposite 
orners: s = (1,−1), t = (−1, 1).Unless they were 
hosen from the sample points, s and t were added to the n nodes. Inaddition, λ was varied between 1 and 20, and also set to the average edge weight.First, the 
hange of results for varying λ and initialization was tested with n = 80 and
n = 100 nodes (3 examples ea
h). One 
riterion to 
hoose the best solution from di�erentinitializations is the obje
tive fun
tion value MCM(f). For ea
h value of λ, we 
hose thesolution with the best MCM. Figure 2.4.3 shows these results. The �rst plot illustrates the44
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Figure 2.4.3: Optimization results for a uniform distribution, n = 100. The �rst plotillustrates the density in the graph, the se
ond the solution for spe
tral 
lustering (N
ut),and the third the optimum for the Min
ut problem. The remaining plots are the partitionsfor the 
ut with margin, l denotes λ, and f is the value of the obje
tive, MCM.density in the graph measured by the degree of the nodes. Dark warm 
olors denote a higherdensity, dark 
old 
olors a lower density. In this respe
t, 
luster limits for solutions withgood obje
tive values are not always in regions of low density. The 
uts a

ount for thea
tual existing edges, and so 
utting a large amount of low-weight edges does not ne
essarilyyield a lower 
ut value than 
utting few heavy edges, as long as those heavy edges are nottoo large a fra
tion of their adja
ent nodes' degrees. The se
ond plot displays the result ofnormalized spe
tral 
lustering. The N
ut obje
tive favors a balan
ed partition with a 
utthat is not too large. Nevertheless, the Min
ut margin is negative for this solution. Theremaining plots show the best initializations by MCM(f). For this graph, initialization 1yields the best solutions for all values of λ, and the best partition is always the same. Inother examples, the best initialization varied with λ. Here, the best Min
ut solution hasboth a relatively large margin and a low 
ut. Other Min
ut solutions resulted in betterbalan
ing, but due to the uniform distribution larger 
lusters also mean that more edgesare 
ut, and hen
e only a great gain by the margin 
an 
ountera
t the high 
ut value.The di�eren
e of the results for this example, depending on the position of sour
e andsink, is demonstrated in Figure 2.4.4. Usually, a dense subregion around one spe
ial node is
ut o� the rest. As λ in
reases, single-node 
lusters are disfavored in addition. From left toright, top to bottom, λ takes values 0, 1.94, 10, and 20. Parti
ularly di�
ult is initialization4, where both s and t are 
losely adja
ent in the 
enter. The partition must 
ut this heavyedge. Moreover, this graph hardly has any nodes 
lose to the sour
e, apart from t. Min
utseparates the sour
e, but even with higher λ only one or two nodes are added to the sour
e
luster. Similarly, initialization 2 separates the sour
e. To remedy the margin of −1, higherweightings of ρ lead to solutions where two other nodes join the sink, but not the 
losestnode besides the sink. The other initializations lead to visually more satisfying partitions.The observations for all graphs are similar to those for the illustration. In summary, of-45



ten, 
utting out a small and dense (relatively to the rest) 
luster yields the best MCM value.As λ in
reases gradually, the balan
ed 
lusters be
ome more balan
ed. Often, though, thebalan
ing deteriorates for large λ. Partly, the same 
lusters are dis
overed that N
ut �nds,but they are usually not the optimal ones by the MCM obje
tive. Furthermore, as above,the initialization has a great in�uen
e on the out
ome, at least for uniform distributions. Inpart, however, the solutions are the same, if there is some (visual) stru
ture.Apart from the in�uen
e of λ and s,t, the number k of neighbors in the k-nearest neighborgraph, was varied between 4 and 7 for n = 80, 100, 150 (2 examples ea
h). Some tenden
iesfor this small number of examples seem to exist: for small weights of the margin, the 
lustersappear to be more balan
ed (by number) if k is small, for large λ this is the 
ase if k islarge. This observation might be an e�e
t of the in
reased 
ut value and degree as k grows.Furthermore, Min
ut's preferen
e of very small 
lusters seems higher for larger k, possiblyagain be
ause of the in
reased 
ut value for larger groups, espe
ially if the group is not wellinter
onne
ted.In general, the experiments with a uniform distribution show a signi�
ant in�uen
e of theinitialization. The di�eren
es may be less strong, however, if the graph has more stru
ture.2.4.4 SummaryIn summary, the experiments show that (i) the �ow problem is only a relaxation of theproblem with integer labels, bringing up the problem of the dis
retization of labels; (ii) themargin mainly remedies Min
ut's preferen
e for single-node 
lusters, but only on a lo
als
ale, favoring the 
uto� of densely 
onne
ted subregions; (iii) the initialization 
an play agreat role, parti
ularly for graphs with weak stru
ture. In addition, the illustrations withtoy graphs in Se
tion 2.2.3 reveal that the margin de�nes equivalen
e 
lasses of partitions.
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Figure 2.4.4: Optimization results for a uniform distribution for varying λ and initializations. Di�erent sour
e and sink nodes lead tovery di�erent partitions. The margin weight λ of 0 (upper left panel), 1.94 (top right), 10 (bottom left) and 20 (bottom right panel) isdenoted l in the last plot of ea
h panel. Ea
h panel 
hows the 7 di�erent initializations. f is the obje
tive fun
tion value, m
 the 
utvalue and r the margin.
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2.5 Dis
ussion and CritiqueLet us take a step ba
k and put the Min
ut margin into a more global pi
ture. Are the resultsintuitively reasonable? Does the modi�
ation meet the initial goals? The interpretation ofmargins in Se
tion 2.1 stated three advantages: robustness, simpli
ity and generalizationability. Before we turn to these 
riteria, let us make a note on the �rst question.Judging by the experiments, the Min
ut with margin 
riterion is an improvement uponthe mere Min
ut obje
tive be
ause it avoids tiny 
lusters, parti
ularly of single nodes, inthe out
ome. Instead, it favors the 
uto� of densely 
onne
ted, separated subgroups inthe graph. On a lo
al s
ale, this tenden
y seems reasonable, but what about the globalpi
ture? The underlying goal was to minimize the expe
ted risk for the entire graph. Theglobal stru
ture of the graph is only indire
tly 
onsidered via the lo
al inter
onne
tions anddensities. Eigenvalue 
riteria su
h as used in spe
tral 
lustering, might dire
tly in
lude amore global pi
ture.Global and lo
al stabilityBy its de�nition, the margin is large if the points may be perturbed a lot without betterbeing assigned to another 
luster. This type of robustness is 
losely related to the questionof the stability of the partition optimizing Qn for di�erent n and di�erent samples. For
lassi�
ation, stability of fn usually 
omes with 
onsisten
y (
f. Se
tion 1.1.2). For 
luster-ing, 
loseness of Q(f) and Q(g) may not imply 
loseness of f and g. Our graph margins
ompare one partition to the ones di�ering by the assignment of one point, under the aspe
tof perturbation. But what about the swap of an entire densely 
onne
ted group? Whilstthe move of the group may improve the 
ut, the reassignment of a single member probablywon't. Hen
e, it is possible that a modi�
ation of the edge weights below the limit of themargin leads to another partition being optimal, one that di�ers by more than the assign-ment of the node in question. Su
h behavior is 
overed by none of the above margin 
riteria.In that sense they are all lo
al. A global 
riterion would 
onsider any other partition tobe
ome better if the graph is perturbed. Su
h a measure, but for an instan
e rather than apartition, is the distin
tness de�ned in Bilu and Linial [2004℄ (see Se
tion 2.2.1).Indeed, Bilu and Linial [2004℄ show that global stability (the optimality of the parti-tion with regard to all other possible partitions) implies lo
al stability, but not vi
e versa.(Max
ut is NP-hard even for lo
al stability.) The demonstration by an example for ourmultipli
ative margin 
an be transferred to Min
ut: Consider a graph G with an optimalpartition with margin ρ. From this graph, we 
onstru
t another graph G× with an analogouspartition of the same global stability, but arbitrary lo
al stability. G× has nodes V ×{0, 1}.Conne
t nodes {vi, 0} and {vi, 1} by an edge of weight τ maxv∈V d(v) = τ maxv∈V w(v, V )(in G), τ ≥ 1. Then ea
h node has at least a margin of τ , so the margin of the partition isat least τ . By in
reasing τ , the lo
al stability or margin 
an be modi�ed arbitrarily, whilethe global stability remains the same.By their de�nition of global stability, however, only the optimal Min
ut 
an be stable,be
ause for all other partitions, there already exists a better partition without any pertur-bation. Thus, su
h a global 
riterion in our �margin against perturbation� approa
h wouldonly reinfor
e the 
ut minimizing the empiri
al error. It is thus a property of the graphalong with its optimal 
ut, and not of any partition. So the global stability of a partitionrequires another de�nition and provides future work. In addition, the global stability isexpensive to 
ompute, due to the exponential number of 
uts to 
ompare to. The questionremains open whether 
heaper lo
ality is enough. Unlike for 
lustering, for linear 
lassi�ers48



in a �reasonable� problem (Q(f∗) ≪ 0.5), lo
al and global stability may be more related,be
ause the labels already provide some stru
ture.Global stability is 
losely related to the set of almost-minimizers of Qn and Q. If thediameter of this set does not 
onverge to zero as n → ∞, there will always be several distin
tminima, and only a small perturbation will su�
e to make one superior to the other. Inthat respe
t, global stability is related to the uniqueness of the optimum (within a 
ertain
lose range of quality), but maybe not an appropriate 
riterion for pi
king fn.Generalization?Another big issue are generalization bounds, stating that a large margin prevents over�tting,so that Q(fn) 
onverges to Q(f∗). Intuitively, the 
uto� of a single node is nothing withgood generalization abilities. The Min
ut margin avoids this behavior.As also shown experimentally in Se
tion 2.4, the Min
ut margin de�nes 
lasses of par-titions with the same ρ. The fun
tions within one 
lass di�er by the assignment of densesubgroups. The a
tual 
omplexity of one 
lass, however, remains un
lear. In some sense,the unnormalized margin is a measure for the lo
al sharpness of a minimum. Sharp lo-
al minima, for 
ontinuous fun
tions, are important in optimization theory for 
onvergen
eproperties of algorithms [see e.g. Burke and Ferris, 1993℄.In that sense, the restri
tion via lo
al margins may provide a type of �
over� of F . Ifa partition has a positive margin, then none of its immediate neighbors (di�ering by theassignment of one point, that is Hamming distan
e one) 
an have a positive margin, be
auseotherwise it would be better to swap the di�ering point without a 
hange of weights. Theexa
t type of restri
tion of Fρ and its 
omplexity, however, still remain to be determined.This would be ne
essary to study generalization bounds.What do the remaining 
andidates, the almost-minimizers of Qn + ρ, look like? If the
lusters are separated by a low density region, then, with high probability, a partition 
loseto f∗ will have a de
ent margin or low 
ut value (or both), be
ause it is not likely to samplea point from the low density region. If the sampling is sparse, however, there may also beother empiri
ally good 
andidates that 
ut through a 
luster and thus are �far apart� in Ffrom f∗. The only remedy will be more samples, be
ause it is more likely to sample a pointfrom a high density region than from the separating low density region. If there is, however,symmetry in the data, so that f∗ is not unique in the set of almost-minimizers of Q, thenthe margin may not help to identify f∗. It is then still possible, however, that Q(fn) is 
loseto Q(f∗) as n grows. A question is if the margin provides any guarantees in that regard,pointing ba
k to the question of the 
omplexity of Fρ with respe
t to the magnitude of ρ.Indeed, it is easy to �mess up� the margin by an outlier point in the low density region thatis 
onne
ted roughly equally to both 
lusters.Algorithmi
 restri
tionsApart from open theoreti
al questions, the implementation of the margin approa
h in this
hapter brings some algorithmi
 restri
tions. First, the optimization problem is so farrestri
ted to K = 2 
lusters. For more 
lusters, the initial two 
lusters may be partitionedre
ursively. This re
ursion may, however, 
ome with a loss in the quality of the results. Anextension of the MILP to more than two 
lusters will raise its 
omplexity. Another drawba
kis the relaxation. Our aim was to fa
ilitate the 
lustering problem via SLT strategies. Butonly the LP has polynomial 
omplexity [Kha
hiyan, 1979℄, integer linear programs are in NP49



[Papadimitriou and Steiglitz, 1982, p. 343℄, and thus also MILPs. The relaxation, though,brings up questions like the transformation of 
ontinuous to dis
rete labels.As a last point, the result depends on the initialization of sour
e and sink, so the algo-rithm should be repeated a polynomial number of times if there is no prior knowledge.The open questions provide lots of future work. Some of them are answered for the
lustering algorithm we turn to in the next 
hapter. It is not a relaxation and proved to be
onsistent.
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Chapter 3Se
ond approa
h: Nearestneighbor 
lusteringA general strategy to a
hieve statisti
al 
onsisten
y is the redu
tion of the 
lass F of 
an-didate fun
tions (see Se
tion 1.1.2). Here, we will restri
t F in a data-dependent way: wewill divide the graph into neighborhoods around O(log n) seed nodes and require the parti-tion fun
tion to be 
onstant within ea
h neighborhood. For a �xed neighborhood stru
ture,only a polynomial number of 
andidate partitions remains. Hen
e, they 
an be enumeratedin polynomial time to �nd the best amongst them, and the NP hard optimization prob-lem is transformed into one in P. This transformation is based on �reasonable� strategiesmotivated by statisti
al learning theory, rather than on (often un
ontrollable) heuristi
s orrelaxations. A bran
h and bound approa
h will further limit the average-
ase 
omplexity.Nearest neighbor 
lustering is 
ompatible with a variety of 
ut 
riteria su
h as N
ut, R
utand WSS. Above all, this algorithm 
an be proved to be statisti
ally 
onsistent.In experiments, we will 
ompare this approa
h to spe
tral 
lustering and the k-meansalgorithm, with respe
t to the 
lustering of a graph and its generalization. In addition, wewill examine di�erent distan
e fun
tions for 
onstru
ting the neighborhoods, and attemptan analysis of the impa
t of the sele
tion of seeds.Parts of this 
hapter have been published in von Luxburg et al. [2007a℄.3.1 Nearest neighbor 
lusteringNearest neighbor 
lustering realizes the redu
tion of the fun
tion 
lass by a restri
tion tofun
tions that are 
onstant within 
ells of the data spa
e. We will now outline the basi
idea, its realization and the 
omplexity of the resulting algorithm.In the following, we assume to be given a set of data points Zn = {X1, . . . , Xn} andpairwise distan
es dij = d(Xi, Xj) or pairwise similarities sij = s(Xi, Xj). Let Qn be the�nite sample quality fun
tion to optimize on the sample. To follow the statisti
al learningtheory approa
h outlined above, we have to optimize Qn over a �small� set Fn of partitionsof Zn. Essentially, we put three requirements on Fn: First, the number of fun
tions in Fnshould be at most polynomial in n. Se
ond, in the limit of n → ∞, the 
lass Fn shouldbe ri
h enough to approximate any measurable partition of the underlying spa
e. Third,in order to perform the optimization, we need to be able to enumerate all members of this
lass. So the fun
tion 
lass Fn should be �
onstru
tive� in some sense. A 
onvenient 
hoi
e51



satisfying all those properties is the 
lass of �nearest neighbor partitions�. To de�ne this
lass, we partition the graph into m ≪ n neighborhood regions. The 
lass then 
omprisesall fun
tions f : X → {1, . . . , K} that are 
onstant within the neighborhoods. Of thosefun
tions, we 
hoose the one minimizing Qn.AlgorithmWe 
onstru
t the neighborhoods as a Voronoi tessellation of the graph. To this end, werandomly sample m seed points Xs1
, . . . Xsm

among the n data points to be the �
enters�of the 
ells. Ea
h point is then assigned to its 
losest seed. The points assigned to seed
Xsj form, together with the seed, the neighborhood set Zj . Note that this de�nition 
an bestated both for similarity and dissimilarity data. In the 
ase of dissimilarity data we buildthe Voronoi 
ells based on the nearest neighbor relation, while in 
ase of similarity valueswe build the 
ells based on the �most similar neighbor� relation.Obviously, the fun
tion 
lass Fn 
ontains O(Km) fun
tions, whi
h is polynomial in n ifthe number m of seeds satis�es m = m(n) = O(log n). Given Fn, the simplest polynomial-time optimization algorithm is the brute-for
e approa
h to evaluate Qn(f) for all f ∈ Fnand 
hoose the solution fn = argminf∈Fn

Qn(f). We 
all the resulting 
lustering the nearestneighbor 
lustering and denote it by NNC(Qn).The 
omplete algorithm then in
ludes the following steps:1. Randomly 
hoose m seed points among the n data points X1, . . . , Xn.2. Assign ea
h non-seed point to its 
losest seed point to 
onstru
t the neighborhoods
Zj , 1 ≤ j ≤ m. The neighborhoods form �super-nodes� Zj.3. Choose fn minimizing Qn from Fn; fn assigns a label to ea
h Zj . We will optimize thepartition on a 
ontra
ted graph where the neighborhoods are represented by super-nodes.4. The points Xi are labeled a

ording to their assigned neighborhood.ComplexityLet us take a 
loser look at the 
omplexity of this algorithm. For a �xed set of seeds, itruns in time O(nm + (q(n, m) + r(n, m))Km). The �rst term 
overs the 
onstru
tion ofthe Voronoi 
ells in a naive implementation. The se
ond part 
omes from 
omputing andevaluating all possible partitions. Let q(n, m) denote the 
omplexity of evaluating Qn(f)for a �xed fun
tion f 1. For N
ut, q(n, m) = O(Kn2), whi
h may be redu
ed to O(Km2)after a 
ontra
tion that is done on
e and 
osts O(n2) (
f. Subse
tion 3.4.1). The term

r(n, m) represents the time to 
ompute one partition. The enumeration of F then 
osts
O(Kmr(n, m)). We 
an naively enumerate all partitions in Fn by a 
ount from 0 to Km ina K-ary system, assigning labels 0, . . . , K − 1. Su
h a 
ount takes

m∑

ℓ=1

Kℓ =
Km+1 − 1

K − 1
= O

(
Km+1

K − 1

)steps, be
ause the �rst digit is 
hanged K times, the se
ond K2 times and so on. This resultsin an amortized 
ost of r(n, m) = O
(

K
K−1

)
= O (1 + 1/(K − 1)) per 
andidate partition.1In fa
t, q may also depend on the number of edges, whi
h is at most n2.52



Note that in su
h a 
ount, some partitions are equivalent under a renaming of labels, so inpra
ti
e we 
an a
tually restri
t the 
ount to those numbers where all labels o

ur and their�rst appearan
e is in as
ending order from left to right.For example, if we 
hoose m = c log(n) for a small 
onstant c, we obtain polynomialruntime in O(n log(n) + (r(n, log n) + q(n, log n))nc log K). The n × n distan
e matrix is
onsidered a pre
omputed input here. Distan
es will be dis
ussed in Se
tion 3.3.Stated in a general way like above, the NNC strategy is 
ompatible with a variety ofquality fun
tions. One popular 
riterion is the Normalized Cut obje
tive. Apart from N
ut,we use RatioCut and the k-means obje
tive (WSS) in experiments. The proof of 
onsisten
y
omprises all these 
riteria.3.2 NNC is 
onsistentNearest neighbor 
lustering is statisti
ally 
onsistent for many 
lustering quality fun
tions,that means Q(fn) 
onverges to Q(f∗) in probability. A 
omplete proof may be found inBube
k and von Luxburg [2007℄, von Luxburg et al. [2007a℄2. Here we only provide a shortsummary of the main results.The theorems require the introdu
tion of some further notation. First, we de�ne apredi
ate A(f) for ea
h 
lustering fun
tion f : Rd → {1, . . . , K} that implements someassumption. It may, for instan
e, be true if all 
lusters have a 
ertain minimal size. Thepredi
ate An(f) is an �estimator� of A(f) based on a �nite sample only. The predi
ates willde�ne membership in the fun
tion 
lasses. Let m := m(n) ≤ n be the number of seeds usedin nearest neighbor 
lustering. To simplify notation we assume in this se
tion that the seedsare the �rst m data points; all results remain valid for any other (even random) 
hoi
e ofseeds. As data spa
e we use X = Rd. We de�ne:
NNm(x) := NNm(n)(x) := argminy∈{X1,...,Xm} ‖x − y‖ ( for x ∈ Rd)

F := {f : Rd → {1, . . . , K} | f 
ontinuous P-a.e. and A(f) true}
Fn := FX1,...,Xn

:= {f : Rd → {1, . . . , K} | f satis�es f(x) = f(NNm(x)), and An(f) is true}
F̃n :=

⋃
X1,...,Xn∈Rd FX1,...,Xn

.So Fn is the spa
e of nearest neighbor partitions based on a spe
i�
 sample, and F̃n theunion of su
h spa
es over all possible samples.Furthermore, let Q : F → R be the quality fun
tion we aim to minimize, and Qn : Fn →R an estimator of this quality fun
tion on a �nite sample. With this notation, the true
lustering f∗ on the underlying spa
e and the nearest neighbor 
lustering fn introdu
ed inthe last se
tion are given by
f∗ ∈ argminf∈F Q(f) and fn ∈ argminf∈Fn

Qn(f).In addition, the proof involves the optimum fun
tion a
hievable in the subspa
e Fn and therestri
tion of the optimal f∗ to satisfy the nearest neighbor rule:
f∗

n ∈ argminf∈Fn
Q(f) and f̃∗(x) := f∗(NNm(x)).2The proof in Bube
k and von Luxburg [2007℄ is more general with a variant of the predi
ate, but thete
hniques are the same. The proof in von Luxburg et al. [2007b℄ is the same as the one sket
hed here. Notethat the proof is by Bube
k and von Luxburg, and thus the only se
tion in this 
hapter that is not my work.53



As distan
e fun
tion between di�erent 
lusterings f, g we will use
Ln(f, g) := P{f(X) 6= g(X) | X1, . . . , Xn}(we need the 
onditioning in 
ase f or g depend on the data, it has no e�e
t otherwise).Endowed with the notation, we 
an turn to the theorems.Theorem 2 (Consisten
y of nearest neighbor 
lustering). Let (Xi)i∈N be a sequen
e ofpoints drawn i.i.d. a

ording to some probability measure P on Rd, and m := m(n) thenumber of seed points used in nearest neighbor 
lustering. Let Q : F → R be a 
lusteringquality fun
tion, Qn : F̃n → R its estimator, and A(f) and An(f) some predi
ates. Assumethat:1. Qn(f) is a 
onsistent estimator of Q(f) whi
h 
onverges su�
iently fast:

∀ε > 0, Km(2n)(d+1)m2

supf∈ eFn
P{|Qn(f) − Q(f)| > ε} → 0.2. An(f) is an estimator of A(f) whi
h is �
onsistent� in the following way:

P{An(f̃∗) true} → 1 and P{A(fn) true} → 1.3. Q is uniformly 
ontinuous with respe
t to the distan
e Ln between F and Fn:
∀ε > 0 ∃δ(ε) > 0 ∀f ∈ F ∀g ∈ Fn : Ln(f, g) ≤ δ(ǫ) =⇒ |Q(f) − Q(g)| ≤ ε.4. limn→∞m(n) = +∞.Then nearest neighbor 
lustering as introdu
ed in Se
tion 3.1 is weakly 
onsistent, that is

Q(fn) → Q(f∗) in probability.Proof. (Sket
h) The proof bounds the probability of divergen
e, P (|Q(fn)−Q(f∗)| ≥ ε) byrepeatedly splitting it into terms that are bounded separately. We �rst remove the absolutevalue, then we split one part into estimation and approximation error that 
an be handledindependently.First, split the absolute value into its two sides:
P{|Q(fn) − Q(f∗)| ≥ ε} ≤ P{Q(fn) − Q(f∗) ≤ −ε} + P{Q(fn) − Q(f∗) ≥ ε}.As a 
onsequen
e of Assumption (2), fn ∈ F with high probability, so the �rst term on theright hand side 
onverges to 0.The main work 
onsists in bounding the se
ond term. By the triangle inequality with

f∗
n, we get the estimation and approximation errors:

P
{
Q(fn) − Q(f∗) ≥ ε

}
≤ P

{
Q(fn) − Q(f∗

n) ≥ ε/2
}

+ P
{
Q(f∗

n) − Q(f∗) ≥ ε/2
}
.Estimation Error. One 
an show that

P{Q(fn) − Q(f∗
n) ≥ ε/2} ≤ P{supf∈Fn

|Qn(f) − Q(f)| ≥ ε/4}.Even though the right hand side resembles the standard quantities often 
onsidered instatisti
al learning theory, it is not straightforward to bound as we do not assume that
Q(f) = EQn(f). To 
ir
umvent the further 
ompli
ation of the data-dependen
y of Fn, werepla
e it by the larger 
lass F̃n, whi
h is not data dependent. Using symmetrization by a54



ghost sample (
f. [Devroye et al., 1996, Se
. 12.3℄), we then move the supremum out of theprobability:
P
{

sup
f∈Fn

|Qn(f) − Q(f)| ≥ ε/4
}

≤ 2SK(F̃n, 2n)
supf∈ eFn

P
{
|Qn(f) − Q(f)| ≥ ε/16

}

inff∈ eFn
P
{
|Qn(f) − Q(f)| ≤ ε/8

}(3.2.1)The unusual denominator in Equation (3.2.1) emerges in the symmetrization step as we donot assume Q(f) = EQn(f). The bound also involves the shattering 
oe�
ient SK(F̃n, 2n)(
f. Se
tion 1.1.2). It is well known [e.g. Devroye et al., 1996, Se
. 21.5℄ that the number ofVoronoi partitions of n points using m 
ells in Rd is bounded by n(d+1)m2 , hen
e the numberof nearest neighbor 
lusterings into K 
lasses is bounded by SK(F̃n, n) ≤ Kmn(d+1)m2

.Hen
e, Assumption (1) implies that for �xed ε and n → ∞ the right hand side ofEquation (3.2.1), and thus also the estimation error, 
onverges to 0.Approximation Error. For the approximation error, we repla
e f∗
n by f̃∗. If An(f̃∗)is true, then f̃∗ ∈ Fn, and by the de�nition of f∗

n we have
Q(f∗

n) − Q(f∗) ≤ Q(f̃∗) − Q(f∗) and thus
P
{
Q(f∗

n) − Q(f∗) ≥ ε
}

≤ P{An(f̃∗) false} + P
{
f̃∗ ∈ Fn and Q(f̃∗) − Q(f∗) ≥ ε

}
.The �rst term on the right hand side 
onverges to 0 by Assumption (2). The se
ondexpression 
an be bounded via the distan
e Ln, using Assumption (3):

P
{
f̃∗ ∈ Fn, Q(f̃∗) − Q(f∗) ≥ ε

}
≤ P

{
Q(f̃∗) − Q(f∗) ≥ ε

}
≤ P

{
Ln(f

∗, f̃∗) ≥ δ(ε)
}
.Te
hniques from Fritz [1975℄ help to show that if n is large enough, then the distan
ebetween a fun
tion f ∈ F evaluated at x and the same fun
tion evaluated at NNm(x) issmall. Namely, for any f ∈F and any ε > 0 there exists some b(δ(ε)) > 0 whi
h does notdepend on n and f su
h that

P{Ln(f, f(NNm(·))) > δ(ε)} ≤ (2/δ(ε) exp(−mb(δ(ε))).The quantity δ(ε) has been introdu
ed in Assumption (3). Assumption (4) ensures that forevery �xed ε, the right hand side 
onverges to 0, making the approximation error vanish.Let us apply the general theorem to parti
ular obje
tive fun
tions. We sket
h the prooffor N
ut and only mention the result for other obje
tives in Theorem 4. Let the similarityfun
tion s : Rd × Rd → R+ be upper bounded by a 
onstant C. For a 
lustering f : Rd →
{1, . . . , K} denote by fk(x) := 1f(x)=k the indi
ator fun
tion of the k-th 
luster. De�ne theempiri
al and true 
ut, volume, and Normalized 
ut as follows:
cutn(fk) := 1

n(n−1)

∑n
i,j=1 fk(Xi)(1 − fk(Xj))s(Xi, Xj)

cut(fk) := EX,Y

(
fk(X)(1 − fk(Y ))s(X, Y )

)

voln(fk) := 1
n(n−1)

∑n
i,j=1 fk(Xi)s(Xi, Xj) vol(fk) := EX,Y

(
fk(X)s(X, Y )

)

Ncutn(f) :=
∑K

k=1
cutn(fk)
voln(fk) Ncut(f) :=

∑K
k=1

cut(fk)
vol(fk)Unlike the empiri
al risk in 
lassi�
ation, the quality estimator Qn = Ncutn for N
ut, is notunbiased: ENcutn(f) 6= Ncut(f). Hen
e, in the proof we will resort to its unbiased partsinstead: E cutn(f) = cut(f) and E voln(f) = vol(f). The predi
ate will embody a 
onstraint55



on 
luster sizes: �x a 
onstant a > 0, a sequen
e (an)n∈N with an ≥ an+1 and an → a andde�ne
A(f) is true : ⇐⇒ vol(fk) > a ∀k = 1, . . . , K

An(f) is true : ⇐⇒ voln(fk) > an ∀k = 1, . . . , K (3.2.2)Theorem 3 (Consisten
y of NNC(Ncutn)). Let (Xi)i∈N be a sequen
e of points drawni.i.d. a

ording to some probability measure P on Rd and s : Rd × Rd → R+ be a similarityfun
tion whi
h is upper bounded by a 
onstant C. Let m := m(n) be the number of seedpoints used in nearest neighbor 
lustering, a > 0 an arbitrary 
onstant, and (an)n∈N amonotoni
ally de
reasing sequen
e with an → a. Then nearest neighbor 
lustering using
Q := Ncut, Qn := Ncutn, and A and An as de�ned in (3.2.2) is weakly 
onsistent if
m(n) → ∞ and m2 log n/(n(a − an)2) → 0.Proof. To 
he
k that all assumptions of Theorem 2 are satis�ed, we �rst establish that
{| cutn(fk) − cut(fk)| ≤ aε} ∩ {| voln(fk) − vol(fk)| ≤ aε} ⊂

{∣∣∣∣
cutn(fk)

voln(fk)
− cut(fk)

vol(fk)

∣∣∣∣ ≤ 2ε

}
.Applying the M
Diarmid inequality to cutn and voln, respe
tively, yields that for all f ∈ F̃n

P{|Ncut(f) − Ncutn(f)| > ε} ≤ 4K exp

(
− na2ε2

8C2K2

)
.Together with m2 log n/(n(a − an)2) → 0 this shows Assumption (1) of Theorem 2. Theproof of Assumption (2) is a bit te
hni
al, but in the end also follows by applying theM
Diarmid inequality to voln(f). Assumption (3) follows by establishing that for f ∈ Fand g ∈ Fn we have

|Ncut(f) − Ncut(g)| ≤ 4CK

a
Ln(f, g).As examples for other quality fun
tions 
ompatible with 
onsistent NNC, 
onsider Ra-tioCut, Within-sum-of-squares, and the ratio of between- and within-
luster similarity:

RatioCutn(f) :=
∑K

k=1
cutn(fk)

nk
RatioCut(f) :=

∑K
k=1

cut(fk)Efk(X)

WSSn(f) := 1
n

∑n
i=1

∑K
k=1 fk(Xi)‖Xi − ck,n‖2 WSS(f) := E∑K

k=1 fk(X)‖X − ck‖2

BWn :=
∑K

k=1
cutn(fk)

voln(fk)−cutn(fk) BW :=
∑K

k=1
cut(fk)

vol(fk)−cut(fk)Here nk :=
∑

i fk(Xi)/n is the fra
tion of points in the k-th 
luster, and ck,n :=
∑

i fk(Xi)Xi/(nnk)and ck := Efk(X)X/Efk(X) are the empiri
al and true 
luster 
enters.Theorem 4 (Consisten
y of NNC(RatioCutn), NNC(WSSn), and NNC(BWn)).Let fn and f∗ be the empiri
al and true minimizers of nearest neighbor 
lustering us-ing RatioCutn, WSSn, or BWn, respe
tively. Then, under assumptions similar to theones in Theorem 3, we have RatioCut(fn) → RatioCut(f∗), WSS(fn) → WSS(f∗), and
BW(fn) → BW(f∗) in probability. For details, see von Luxburg et al. [2007b℄.56



3.3 Distan
e fun
tionsAn important part from a pra
ti
al viewpoint is the 
onstru
tion of the neighborhoods.Ea
h node in the graph is assigned to its 
losest seed. To measure 
loseness, we need adistan
e measure between nodes in the graph. Its importan
e lies in the determination ofthe stru
ture of the neighborhood 
ells and hen
e its impa
t on the solution by de�ning Fn.The proof above is based on the Eu
lidean distan
e. The result might be extendedto other distan
es, parti
ularly those that behave �reasonably� in the limit, that means as
n → ∞, ea
h point has a nonempty ε-neighborhood, should be appli
able as well3.In the following, we will introdu
e a variety of distan
es that we used, the Eu
lideandistan
e as well as graph-spe
i�
 distan
es motivated by Markov 
hains, random walks andele
tri
al networks.To remain in P, the matrix of distan
es between seed nodes and all other points mustbe 
onstru
tible in polynomial time. By the formulas given below, all distan
es 
an be
omputed in polynomial time, and hen
e also all the O(n log n) distan
es required for the
onstru
tion of the neighborhoods. Some of the distan
es below require eigenvalues and-ve
tors. Note that the arithmeti
 
omplexity of solving the eigenproblem for an n × nmatrix to a relative pre
ision of 2−b is in O(n3 +n(log2 n) log b) [Pan and Chen, 1999℄. (Foran overview of eigenve
tor methods for symmetri
 matri
es, see e.g. Dhillon [1997, Ch. 2℄.)Eu
lidean distan
eThe Eu
lidean distan
e between two points X , Y ∈ Rd is de�ned as

√√√√
d∑

i=1

(X(i) − Y (i))2,where X(i) and Y (i) denote the i-th entry in the ve
tors X and Y , respe
tively. It is a
ommonly used distan
e in real spa
es and generates 
ir
le-shaped neighborhoods. If theinput data is given as a graph with edge weights, however, it needs to be embedded in someEu
lidean spa
e Rd for appli
ability of this distan
e. The embedding 
an then have a greatin�uen
e on the result, and there are various possibilities to 
hoose it and its dimension d.Hen
e, other distan
es that a

ount for the stru
ture of the graph may be better suited.Commute or Resistan
e distan
e and its interpretationsThe 
ommute distan
e is 
ommonly used for graphs and has been investigated in a numberof di�erent respe
ts. Two interpretations 
omplement ea
h other: the expe
ted travelingtime in a random walk, and the resistan
e in an ele
tri
al network. The former 
on
ept isrelated to Markov 
hains.First 
onsider distan
e in light of a random walk on the given graph. Given a start node,we randomly 
hoose an adja
ent node to whi
h we transfer. The random walk 
onsists of asequen
e of su
h transitions. In a �nite, undire
ted graph, su
h a walk is a
tually a �nite,time-reversible Markov 
hain [Lovász, 1993℄. Properties of and 
onne
tions between randomwalks, Markov 
hains and ele
tri
al networks are dis
ussed in Lovász [1993℄, Bollobás [1998,Ch. 9℄ and Aldous and Fill [2001, Ch. 3℄. Starting at node Xi, the probability to dire
tly3If, in the limit n → ∞, some points be
ome separated, the distan
e is probably not appropriate for allobje
tives in extreme 
ases (see the 
ounterexample in Figure 3.3.1, des
ribed below).57



get to node Xj is
p(Xi, Xj) =

w(Xi, Xj)

d(Xi)
,where d(Xi) is the degree of Xi. In su
h a setting, the 
ommute distan
e C(Xi, Xj) between

Xi and Xj is the expe
ted number of steps it takes to travel from Xi to Xj and ba
k.Let us look at some ways to 
ompute the distan
e. Dire
t formulas have been proved interms of the normalized and unnormalized Lapla
ian. We outline both alternatives.1. Let Lrw = I−D−1W be the normalized Lapla
ian of the graph, where D is a diagonalmatrix with D(i, i) = w(Xi, V ). Lovász [1993℄ shows that
C(Xi, Xj) = 2 vol(G)

n∑

k=2

1

λk

(
vkj√
d(Xj)

− vki√
d(Xi)

)2 (3.3.1)where λk is the k-th eigenvalue of Lrw and vki the i-th entry in the k-th eigenve
torof Lrw. Here and in the following, we number eigenvalues in nondes
ending order, so
λ1 = 0. The volume is vol(G) = w(V, V ). This formula is 
losely related to Expression(3.3.3) for the hitting time, be
ause C(Xi, Xj) = H(Xi, Xj) + H(Xj, Xi).Formula (3.3.1) shows that the 
ommute time depends on the di�eren
e of the eigen-ve
tor entries, weighted by the inverse of the 
orresponding eigenvalue. The Fiedlerve
tor will hen
e have the greatest in�uen
e. Spe
tral 
lustering usually partitions thepoints into 
lusters a

ording to their entries in the Fiedler ve
tor, but only 
onsidersthis se
ond eigenve
tor.2. A

ording to Klein and Randi¢ [1993℄ (see also [Gutman and Xiao, 2004, Xiao andGutman, 2003℄), the 
ommute distan
e 
an also be 
omputed via the pseudoinverse ofthe (unnormalized) graph Lapla
ian L = D − W :

C(Xi, Xj) = L†(i, i) + L†(j, j) − L†(i, j) − L†(j, i) =

n∑

k=2

1

λk
(vki − vkj)

2. (3.3.2)Here, λk is the k-th eigenvalue of L and vki the i-th entry of the k-th eigenve
tor of
L.Let us turn to some further relations and interpretations of the 
ommute distan
e.For an unweighted graph, the 
ommute distan
e is related to the expe
ted sojourn time

Sk(Xi → Xj), the expe
ted number of times Xk is visited before we rea
h node Xj , startingfrom Xi: C(Xi, Xj)/(2 vol(G)) = Si(Xi → Xj)/d(Xi) [Bollobás, 1998, p. 315℄. It seemsreasonable that there is a 
onne
tion between the 
ommute time and the expe
ted numberof revisits of Xi before Xj is rea
hed. This normalized 
ommute time also equals the ex-pe
ted number of times any edge is traversed on a walk from Xi to Xj and ba
k [Bollobás,1998, p. 315℄.Apart from the random walk view, the distan
e may be interpreted with respe
t toele
tri
al networks and springs. Consider the graph as an ele
tri
al network, where theinverse edge weights de�ne resistan
es between the nodes. Then the 
ommute time betweennodes Xi and Xj 
orresponds to the resistan
e R(Xi, Xj) between Xi and Xj in the 
ir
uit:
C(Xi, Xj) = 2 vol(G)R(Xi, Xj) [Lovász, 1993℄. Resistan
e distan
e is also studied in Kleinand Randi¢ [1993℄. 58



Furthermore, an unweighted graph 
an be viewed as a system of springs with unitHooke 
onstant. Nail nodes Xi and Xj down at positions 1 and 0 on the real line.The graph will �nd its equilibrium. The for
e pulling the nails is then the 
ondu
tan
e
1/R(Xi, Xj) = 2 vol(G)/C(Xi, Xj). The energy of the system is 1/(2R(Xi, Xj)) [Lovász,1993℄.Returning to NNC and its neighborhood stru
ture, note that the 
ommute distan
e mayimpli
itly balan
e neighborhood sizes. This tenden
y 
ould be favorable for 
riteria thatin
lude balan
ing, su
h as N
ut or RatioCut. Let us detail the intuition behind the balan
e
onje
ture. Neighborhoods are 
onstru
ted around seed nodes. A node Xi is assigned tothe seed that it rea
hes fastest by expe
tation, in
luding the return time to Xi. Or, fromthe other perspe
tive, a seed �gets� the nodes that it rea
hes �rst, if the expe
ted returntime is also 
onsidered. If a seed node Xs has many neighbor nodes (in a high-densityregion), the 
onne
tion to ea
h will only form a small part of its degree, and hen
e thetransition probability to ea
h neighbor is relatively low. This de
reased probability leadsto a larger expe
ted time to rea
h any adja
ent node and other nodes �behind� it, unlessthose nodes are well-
onne
ted to most dire
t neighbors of Xs. If the target node is well-
onne
ted to many other nodes, then again the probability of �distra
tion� is higher for thereturn. Hen
e, a neighborhood of su
h a well-
onne
ted, �heavy� seed may spread in manydire
tions, but not too far, whereas a seed with few neighbors (in a low-density region)rea
hes them �faster� and thus may 
over a wider area. This is, however, just a 
onje
turewithout any mathemati
al proof.Hitting time or A

ess timeThe hitting or a

ess time H(Xi, Xj) in a Markov 
hain or random walk is the expe
tednumber of steps before node Xj is visited, starting at node Xi [Lovász, 1993℄. Hen
e, the
ommute time is the hitting time from Xi to Xj and ba
k: C(Xi, Xj) = H(Xi, Xj) +
H(Xj , Xi).Like the 
ommute distan
e, it 
an be 
omputed via the graph Lapla
ian, as des
ribedin Lovász [1993℄. The matrix H of hitting times is the solution of the equation LrwH =
1n×n − 2 vol(G)D. Even though Lrw is singular, we know that H(i, i) = 0 for all nodes Xi.Hen
e, we 
ompute H by subtra
ting from ea
h 
olumn of Ĥ = L†

rw(1n×n − 2 vol(G)D) itsdiagonal entry.For an unweighted graph (weights in {0, 1}), the hitting time 
an be expressed as
H(Xs, Xt) = 2 vol(G)

n∑

k=2

1

λk

(
v2

kt

d(Xt)
− vksvkt√

d(Xs)d(Xt)

)
, (3.3.3)where λk is the k-th eigenvalue of Lrw and vks the s-th entry in the k-th eigenve
tor of Lrw.Note that, in 
ontrast to the 
ommute distan
e, the hitting time is not symmetri
: ingeneral H(Xi, Xj) and H(Xj , Xi) di�er.Similar to the 
ommute distan
e, the hitting time 
an be expressed in terms of ele
tri
alnetworks [Chandra et al., 1996℄. In the 
ir
uit des
ribed by an unweighted graph, inje
t

d(Xj) units of 
urrent into ea
h node Xj ∈ V , and remove 2|E| units from Xi. Then
H(Xi, Xj) denotes the voltage V̂ (Xj) − V̂ (Xi) at Xj for all Xj ∈ V . By a 
hange ofsigns, H(Xj , Xk) is the voltage at Xj relative to Xk (i.e. V̂ (Xj) − V̂ (Xk)) if 2|E| units of
urrent are inje
ted at Xj and d(Xk) extra
ted at ea
h Xk ∈ V . A superposition of the �rstand se
ond 
urrent leads to a net 
urrent of 2|E| from Xj to Xi. With this 
urrent, the59



voltage di�eren
e of Xj and Xi is H(Xi, Xj) + H(Xj , Xi) = C(Xj , Xi) = 2|E|R(Xj , Xi),the 
ommute distan
e or resistan
e, in 
onformity with Ohm's law.Note that the hitting time o�ers di�erent ways to 
onstru
t the neighborhoods, be
auseit is not symmetri
. One 
ould either take the distan
e from a seed to a point or vi
eversa. In the experiments below we 
hose the latter, whi
h 
on
eptually 
orresponds to ageneralization from the point's perspe
tive: starting a random walk at the node, assign itto the seed that it rea
hes �rst, by expe
tation.Variations based on the Commute distan
eIn some 
ases, the eigenve
tors of the unnormalized Lapla
ian may approa
h Dira
 fun
tions.This 
an happen for the eigenve
tors whose 
orresponding eigenvalues are not signi�
antlybelow the minimum degree in the graph [von Luxburg et al.℄, and hen
e more often towardsthe end of the spe
trum. Figure 3.3.1 illustrates this behavior for a toy example4. Theillustrated results be
ome stronger as the graph approa
hes a 
lique with uniform weights.In a Dira
 ve
tor, the entry for one point is very di�erent from all other entries. If theweighting 1/λk for the 
orresponding eigenve
tor is not small enough, this di�eren
e willlead to a large 
ommute distan
e of this point with all others, be
ause the distan
e is thesum of the di�eren
es in the eigenve
tor entries (Equation (3.3.2)). As an e�e
t, this point,�far away� from all others, is likely to end up in a 
luster by itself.Even though the eigenve
tors of the normalized Lapla
ians do not 
onverge to Dira
 fun
-tions, the eigenve
tors 
an be
ome noisy towards the end of the spe
trum (see Figure 3.3.1).They are inherently less smooth than the earlier ones, as they represent higher os
illations.This noisiness, along with the property of the eigenve
tors to be
ome more similar towardsthe end of the spe
trum, 
ould lead to numeri
al ina

ura
ies. Thus, the impa
t of thoseve
tors 
ould distort the result when 
omputing a distan
e as in Equation (3.3.2).If the di�eren
es of the eigenve
tor entries for ea
h point are weighted by 1/λk − 1/λn,then the end of the spe
trum is less in�uential. The 
orresponding eigenve
tors are 
onsid-ered less, but the relative impa
t of the �rst ve
tors remains the same, as in a subtra
tivenormalization. In 
omparison, spe
tral 
lustering only takes the �rst K eigenve
tors intoa

ount, but with equal weights.We introdu
e two variants of the 
ommute distan
e, with the new weighting. Thenormalized 
ommute distan
e (ND) is based on the non-symmetri
 normalized Lapla
ian,
Lrw = I − D−1W . The symmetri
 normalized Lapla
ian, Lsym = I − D−1/2WD−1/2, onthe other hand, forms the basis of the symmetri
 normalized 
ommute distan
e (SND):

ND(Xi, Xj) = 2 vol(G)

n∑

k=2

(
1

λk(Lrw)
− 1

λn(Lrw)

)
(vki(Lrw) − vkj(Lrw))

2

SND(Xi, Xj) = 2 vol(G)
n∑

k=2

(
1

λk(Lsym)
− 1

λn(Lsym)

)(
vki(Lsym)√

d(Xi)
− vkj(Lsym)√

d(Xj)

)2

= C(Xi, Xj) −
2 vol(G)

λn(Lsym)

n∑

k=2

(
vki(Lsym)√

d(Xi)
− vkj(Lsym)√

d(Xj)

)2

.4Note that the Dira
 behavior be
omes stronger as the kernel width grows and the graph approa
hes a
lique with uniform weights. For RatioCut in su
h a 
lique, however, any 
ut is equal (RatioCut(f) = 2n),so the 
lustering a
hieved with L is still okay from the perspe
tive of the R
ut obje
tive. This is, however,not the 
ase for all obje
tives. Therefore the example shows that in pra
ti
e, the obje
tive and distan
eshould �mat
h�. We will not go into further detail here, though.60
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Figure 3.3.1: Lapla
ian eigenvalues and -ve
tors for a toy example: 201 points in 1D drawnfrom 3 Gaussians with means 2, 4, 6 and σ = 0.25. The similarity graph is based on aGaussian kernel of width 1. The �rst panel shows the inverse eigenvalues (�rst 
olumn) andsome eigenve
tors (other 
olumns, number indi
ated in title) for the unnormalized Lapla
ian
L (row 1), Lrw (row 2) and Lsym (row 3). The asterisk indi
ates when λi > maxj d(Xj), itonly happens for L (here, for i = 5). The eigenve
tors of L approa
h Dira
 fun
tions early,when their weight is still high relative to that of the more useful eigenve
tors. The spe
traof the normalized Lapla
ians de
ay faster, and only towards the end of the spe
trum theve
tors be
ome noisy. The se
ond panel shows the distan
e matri
es (darker is smaller).With the CD, points are very dissimilar, parti
ularly the edge points to others. With NDand SND, this is not the 
ase. The untitled plot is the analogue of ND and SND for L.(Note that the 
olor s
ale is not the same in all plots, they are s
aled separately.)61



The last line shows that the 
ommute distan
e is basi
ally modi�ed by the sum of all dif-feren
es, weighted by the inverse of the largest eigenvalue. Theoreti
ally, these equationsshould all be the same [von Luxburg, 2006℄. In pra
ti
e, however, toy experiments withMatlab lead to slightly di�erent solutions. This divergen
e 
ould be due to numeri
al prob-lems.Despite the motivation of better balan
ing, in the experiments (see Se
tion 3.5.5), NDand SND did not lead to less varian
e in 
luster sizes on real data.3.4 ImplementationThe basi
 des
ription of nearest neighbor 
lustering in Se
tion 3.1 raises the question ofimplementational details that improve 
omputational e�
ien
y, together with their impa
ton the solution.Here, we will outline two aspe
ts. First, an optimization of partitions of a 
ontra
tedgraph is 
omputationally more e�
ient than an equivalent optimization on the originalgraph. Se
ond, the brute-for
e sear
h through Fn 
an be improved by a bran
h and boundapproa
h that we des
ribe for K =2 
lusters and Ncut. For ba
kground reading on bran
hand bound methods see Brus
o and Stahl [2005℄. Both bran
h and bound and the 
ontra
-tion guarantee to �nd the optimal solution and thus do not in�uen
e the result, 
ontrary tothe 
hoi
e of the distan
e fun
tion.We will 
on
lude this se
tion with some heuristi
s to improve the average runtime. Notethat these heuristi
s still guarantee an optimal solution.3.4.1 Optimization over super-pointsIn NNC, the 
andidate fun
tions are 
onstant on the neighborhoods. So the neighborhoodstru
ture opens ways for a 
ompression of possible solutions. Let us detail and prove onesu
h approa
h.The general representation of a partition f of n data points requires O(n) spa
e, givingthe label for ea
h point. Similarly, to evaluate Qn(f) on the graph, we need to look at
n points and all O(n2) edges or similarities. This 
onstitutes a substantial e�ort in theoptimization, be
ause we must 
ompute ea
h 
andidate partition and evaluate Qn for it. The
lass Fn of nearest neighbor partitions, however, allows for a more e�
ient representationof the partitions and evaluation of Qn, by 
onsidering a 
ontra
ted graph of super-points.Let us state this idea more formally, before we prove that the optimization on the
ontra
ted graph is equal to that on the original graph. For an original data set V =
{X1, . . . , Xn} with a similarity fun
tion s : V 7→ R+, de�ne m super-nodes Zi representingthe neighborhood 
ells. Super-node Zi 
ontains all points assigned to the i-th seed. Thesesuper-points may be interpreted as nodes in a 
ontra
ted graph, endowed with a super-similarity fun
tion s̄(Zs, Zt) :=

∑
Xi∈Zs,Xj∈Zt

s(Xi, Xj). If the data is given as a graph, theedge weights de�ne similarities, and an analogous summation over neighborhoods yields edgeweights w̄ in the 
ontra
ted graph from the edge weights w. Note that the 
ontra
ted graphhas self loops, that is w̄(Zt, Zt) > 0, if there are edges within neighborhoods. Ea
h partition
f ∈ Fn 
an then be represented as an extension of a fun
tion f̄ : {Z1, . . . , Zm} 7→ R+ onthe 
ontra
ted set, with f(Xi) = f̄(Zs) if Xi belongs to the s-th 
ell. So the extension to
V 
onsists of labeling ea
h Xi by the label f̄(Zs) of the super-point Zs 
orresponding to itsneighborhood. Similarly to the similarities, Qn 
an be de�ned on the partitions f̄ of the62




ontra
tion, su
h as
Ncut(f̄) =

K∑

ℓ=1

w̄(Cℓ, V \Cℓ)

vol(Cℓ)
, (3.4.1)with vol(Cℓ) =

∑

Zi,∈Cℓ,1≤j≤m

w̄(Zi, Zj).To 
ompute Ncut, we 
an repla
e the n×n weight or similarity matrix of the original graphby an m×m matrix of w̄ for the super-points. Apart from memory savings, the 
ost of thesummation then drops from O(n) to O(m) for ea
h partition.After a reformulation, the WSS obje
tive 
an as well be 
omputed in terms of super-points and a pre
omputable 
onstant (�rst term).
WSS(f̄) =

1

n

∑

Xi∈V

X⊤
i Xi −

1

n

K∑

ℓ=1

1∑
Zu∈Cℓ

|Zu|
∑

Zs,Zt∈Cℓ

Z̃⊤
s Z̃t, (3.4.2)with Z̃s =

∑

Xi∈Zs

Xi,

|Zs| =
∑

Xi∈Zs

1The following proposition justi�es the repla
ement of Ncut(f) and WSS(f) by Ncut(f̄)and WSS(f̄) in the optimization.Proposition 5 (Equivalen
e of optimization on nodes and super-points). Let the super-nodes Zi and the weights w̄ of the 
ontra
ted graph be de�ned as above. Assume that f :
V 7→ R+ is a fun
tion on the original verti
es whi
h is 
onstant within ea
h neighborhood
Zi. Denote by f̄ : {Z1, . . . , Zm} 7→ R+ the 
orresponding partition of the super-nodes.Furthermore, let Ncut(f) and WSS(f) be the quality fun
tion on the original graph, and
Ncut(f̄) and WSS(f̄) their 
orrespondents on the 
ontra
tion, as de�ned in Equations (3.4.1)and (3.4.2).Then Ncut(f) = Ncut(f̄) and WSS(f) = WSS(f̄).Proof. We �rst prove equivalen
e for Ncut, then for WSS.It is easy to see that the sums of weights between neighborhoods su�
e to exa
tly
ompute the Ncut on the full graph for 
lusters C1 to CK . The original 
riterion is

Ncut(f) =
k∑

ℓ=1

w(Cℓ, V \Cℓ)

vol(Cℓ)
.The numerators are

w(Cℓ, V \Cℓ) =
∑

Xi∈Cℓ

∑

Xj /∈Cℓ

w(Xi, Xj)

=
∑

Zs⊆Cℓ

∑

Xi∈Zs

∑

Zt*Cℓ

∑

Xj∈Zt

w(Xi, Xj)

=
∑

Zs⊆Cℓ

∑

Zt*Cℓ

w̄(Zs, Zt)

=
∑

Zs⊆Cℓ

w̄(Zs, V \Cℓ) = w̄(Cℓ, V \Cℓ). (3.4.3)63



Analogously, the summation for the denominator 
an be rewritten in terms of the diagonalelements of the m × m matrix of w̄:
vol(Cℓ) =

∑

Xi∈Cℓ,Xj∈V

w(Xi, Xj)

=
∑

Zs∈Cℓ,1≤t≤m

∑

Xi∈Zs,Xj∈Zt

w(Xi, Xj)

=
∑

Zs∈Cℓ,1≤t≤m

w̄(Zs, Zt). (3.4.4)Reformulations (3.4.3) and (3.4.4) imply that w(Cℓ,V \Cℓ)
vol(Cℓ)

= w̄(Cℓ,V \Cℓ)

vol(Cℓ)
for all ℓ and thus

Ncut(f) = Ncut(f̄).In a similar manner, we 
an restateWSS for the 
ontra
ted points. Let cℓ =
(∑

Xi∈Cℓ
Xi

)
/|Cℓ|be the mean of 
luster Cℓ, and n = |V |. Then

WSS(f) =
1

n

K∑

ℓ=1

∑

Xi∈Cℓ

‖Xi − cℓ‖2

=
1

n

K∑

ℓ=1

∑

Xi∈Cℓ


 1

|Cℓ|
∑

Xj∈Cℓ

(Xi − Xj)




⊤(
1

|Cℓ|
∑

Xk∈Cℓ

(Xi − Xk)

)

=
1

n


 ∑

Xi∈V

X⊤
i Xi −

K∑

ℓ=1

1

|Cℓ|
∑

Xi,Xj∈Cℓ

X⊤
i Xj




=
1

n

∑

Xi∈V

X⊤
i Xi −

1

n

K∑

ℓ=1

1

|Cℓ|
∑

Zs,Zt∈Cℓ

∑

Xi∈Zs

∑

Xj∈Zt

X⊤
i Xj

=
1

n

∑

Xi∈V

X⊤
i Xi −

1

n

K∑

ℓ=1

1

|Cℓ|
∑

Zs,Zt∈Cℓ

(
∑

Xi∈Zs

Xi

)⊤

 ∑

Xj∈Zt

Xj




=
1

n

∑

Xi∈V

X⊤
i Xi −

1

n

K∑

ℓ=1

1∑
Zu∈Cℓ

|Zu|
∑

Zs,Zt∈Cℓ

Z̃⊤
s Z̃t

= WSS(f̄).Thus, it su�
es to pre
ompute the sum of the squared norms of the points as well as thedot produ
ts of the sums Z̃s =
∑

Xi∈Zs
Xi.3.4.2 A bran
h and bound algorithmNot only the 
omputation of Qn, but also the sear
h through Fn 
an be sped up on average.Even though, for m = O(log n), all possible O(2log n) partitions 
an be enumerated inpolynomial time, more e�
ient strategies exist. For better average-
ase runtime, we revertto a bran
h and bound approa
h, whi
h is still guaranteed to return the optimal solution.We will prove this 
laim for our algorithm after a des
ription of it. In the following, weoperate on the 
ontra
ted graph and assume to sear
h for K = 2 
lusters.64



The general idea of bran
h and bound is as follows. We represent the solution spa
eas a tree and assume that we know an upper bound θu on the obje
tive fun
tion value ofthe optimal solution (for example, θu 
ould be the value of a parti
ular initial 
andidate
lustering f̄0). Then we des
end in the tree, and at ea
h vertex de
ide whether the 
urrentbran
h of the tree might 
ontain a better solution than the one given by the upper bound
θu. To this end, we need to 
ompute a lower bound θl on the obje
tive fun
tion values of allsolutions represented in the 
urrent bran
h of the tree. If θl > θu we know that the 
urrentbran
h only 
ontains solutions whi
h are worse than the one we already have, and we 
anprune this bran
h, saving the time to inspe
t it any further.Let us look at the example of solving NNC(Ncut) for two 
lusters C+ and C−, withrespe
tive labels +1 and −1. Figure 3.4.2 outlines the re
ursive algorithm in pseudo
ode.Initially, Z1, in a 
luster by itself, is labeled by +1, and all other nodes by −1. In ea
h step,the two bran
hes 
onsist of �xing the label of the next super-point to be positive or remainnegative. For K 
lusters, we will then have K bran
hes to 
hoose from. Before we prove
orre
tness of our algorithm, we go into more detail about the bran
hing strategies.

A B
f +1 -1 +1 +1 -1 -1 -1 -1 -1 -1

↑
iFigure 3.4.1: Illustration of the sets A, B and f in re
ursion i, in whi
h the assignment of

Zi is determined. The �xed subsets are A− = {Z2} and A+ = {Z1, Z3, Z4}.Assume we have already determined the labels l1, . . . , li−1∈{±1} of the �rst i−1 super-points. For those points we introdu
e the set A = {Z1, . . . , Zi−1} with subsets A− :=
{Zj | j < i, lj = −1} and A+ := {Zj | j < i, lj = +1}. The remaining points formset B = {Zi, . . . , Zm} so that V = A ∪ B. All points in B get the label −1 by default.In re
ursion level i, we de
ide about moving Zi to 
luster C+. Figure 3.4.1 s
hemati
allyillustrates the sets.The bran
h and bound strategy instru
ts to investigate whether the movement of one ormore points from B to the +1 
luster has the potential to improve the Ncut. More formally,the question is whether the �bran
h� of 
lusterings that agree on the 
urrent �xed labels
l1, . . . , li−1 on A 
ould 
ontain a solution whi
h is better than any previously 
onsideredpartition.We try to answer this question by ex
lusions. If we 
annot ex
lude a better solutionin the 
urrent bran
h, we explore it further. We determine ex
lusions in two steps (Part3. in Figure 3.4.2), a dire
t and an indire
t one. First, we determine if an improvementof the 
urrent Ncut is possible at all by relabeling any node in B, and keeping labels 1 to
i − 1 �xed (Step I). If our 
onditions are not satis�ed, the 
urrent bran
h 
annot lead toany improvement. Their satisfa
tion, however, does not imply that the bran
h does indeed
ontain a better solution. Thus, in Step II, we 
ompute a lower bound θl on the solutionsin the bran
h and 
ompare it to the 
urrent upper bound θu.Both steps 
onsider the two fa
tors of the quality fun
tion separately, namely the �
utterm� and the �volume term� in the produ
t Ncut(f) = cut(C+, C−)·(1/ vol(C+)+1/ vol(C−)).Step I 
onsists of one 
ondition for the 
ut and one for the volume term, and in Step II webound the 
ut and volume terms separately. Hen
e, we stru
ture either step into a 
ut (I.
,II.
) and a volume (I.v, II.v) part. 65



Bran
h and bound algorithm for N
ut: f∗ = bbn
ut(S̄, i, f, θu){1. Set g := f; set A−, A+, and B as des
ribed in the text2. // Deal with spe
ial 
ases:� If i = m and A− = ∅ then return f.� If i = m and A− 6= ∅:� Set gi = +1.� If Ncut(g) < Ncut(f) return g, else return f.3. // Pruning:� If maxj≥i{s̄(j,A
+)− s̄(j,A−)} ≤ 0 (I.
), and vol(A+) > vol(A∪B)/2 (I.v),then return f.� Compute lower bound θl as des
ribed in the text.� If θl ≥ θu then return f.4. // If no pruning possible, re
ursively 
all bbn
ut:� Set gi = +1, θ′

u := min{Ncut(g), θu}, 
all g′ := bbn
ut(S̄, g, i + 1, θ′
u)� Set gi = −1, θ′′

u := min{Ncut(g), θ′
u}, 
all g′′ := bbn
ut(S̄, g, i + 1, θ′′

u)� If Ncut(g′) ≤ Ncut(g′′) then return g′, else return g′′. }Figure 3.4.2: Bran
h and bound algorithm for solving NNC(Ncut) for K = 2. The algorithmis initially 
alled with the super-similarity matrix S̄, i = 2, f = (+1,−1,−1, ...,−1), and θuthe N
ut value of f .
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Figure 3.4.3: The vol-ume term 1/x+1/(1−
x) for x ∈ (0, 1).

Let us take a 
loser look at the 
onditions and bounds, startingwith I.
 and I.v. The 
riteria of Step I are very simple: assigningat least one point in B to C+ 
an only lead to an improvement ifthis either de
reases the 
ut term or the volume term of Ncut (orboth).I.
 Ne
essary for an improvement of the 
ut term is that at leastone point in B is more atta
hed to the nodes in A+ than tothe nodes in A− ∪ B labeled by −1. More formally, it mustbe that maxj≥i{s̄(Zj ,A+) − s̄(Zj ,A−)} ≥ 0I.v The volume term is minimized if both 
lusters are equal involume, vol(C+) = vol(C−) = vol(V )/2, and in
reases as thesizes be
ome more unbalan
ed (Figure 3.4.3). Thus, if C+ already takes up morethan half the volume, vol(C+) = vol(A+) > vol(V )/2, an additional node will furtherimpair the volume balan
e and in
rease the term. Therefore, the volume 
riterion is
vol(A+) ≤ vol(V )/2.If neither 
ondition is satis�ed, we retra
t. Otherwise, we pro
eed to Step II.In Step II, we 
ompute a lower bound θl and 
ompare it to an upper bound θu on theoptimal N
ut value, namely to the N
ut value of the best fun
tion we have seen so far. If

θl ≥ θu, then no improvement is possible by any 
lustering in the 
urrent bran
h of thetree, and we retra
t. To 
ompute θl, assume we assign a non-empty set B+ ⊂ B to 
luster66



C+, and keep the labels −1 in remaining set B− = B \ B+. Let α(C+, C−) = cut(C+, C−)and β(C+, C−) = 1/ vol(C+)+1/ vol(C−) denote the 
ut and volume terms, respe
tively. Webound them separately by α′ and β′ to set θl = α′β′.II.
 The 
ut term 
onsists of a �xed part, the 
ut edges between A+ and A−, and avariable part, the 
ut edges adja
ent to nodes in B. To bound α from below, 
onsidertwo sub
ases. If A− = ∅, at least one node from B must remain in C−, and the �xedpart is zero. Hen
e, the 
ut is at least as big as the minimum atta
hment of any nodein B to A+. Otherwise, any nonempty subset of B may be moved, and the 
ut 
onsistsat least of the �xed part plus the minimum weight between a node in B and A−. Moreformally, using the 
onvention s̄(A, ∅) = 0, set
α′ =

{
s̄(A+,A−) + minj≥i s̄(Zj ,A−) if A− 6= ∅
minj≥i s̄(Zj ,A+) otherwise.II.v As stated above, β(C+, C−) is minimal if vol(C+) = vol(C−) = vol(V )/2. The volumeterm 
an only de
rease to this value of 4/ vol(V ) if vol(A+) ≤ vol(V )/2, be
ause theaddition B+ to C+ = A+ ∪ B+ is nonempty. If A+ already 
overs half the entirevolume, then an in
rease is unavoidable. This rise is minimal if the node in B withthe smallest degree is moved to C+, be
ause it leads to the least further deteriorationof the volume balan
e. In formal terms, set

β′ =

{
4/ vol(V ) if vol(A+) ≤ vol(V )/2

minj≥i {1/ vol(A+ ∪ Zj) + 1/ vol(A− ∪ B \ Zj)} otherwise.If θl ≥ θu, we retra
t, otherwise we re
ursively investigate the sub-bran
hes of setting
li = +1 and li = −1, and keep θu updated. This re
ursion is Step 4. in Figure 3.4.2. Someheuristi
s 
an improve the average runtime, as outlined in Subse
tion 3.4.3.The 
omplete algorithm returns a global minimizer of Ncut, as the next se
tion shows.Corre
tnessLemma 6 (Corre
tness of bbn
ut). Let the labels of A(i) = A+(i)∪A−(i) = {Z1, . . . , Zi−1}be �xed, and assume the input θu is a stri
t upper bound on the Ncut values of the partitionsin 
onformity with the labels on A. Then the algorithm bbn
ut returns an assignment ofthe verti
es B(i) = {Zi, Zi+1, . . . , Zm} that optimizes the Ncut 
riterion, with �xed labels on
A(i).Proof. We prove Lemma 6 by indu
tion on the number nB = |B(i)| of nodes to assign. A�nal assignment is represented by C+ = A+ ∪B+ and C− = A− ∪B−. For notational issues,let bbncut(A−(i),A+(i),B(i)) denote the solution returned by bbn
ut for inputs A+(i),
A−(i) and B(i), where verti
es starting from Zi were assigned to a 
luster.Base Case. Assume i = m, so B(m) = {Zm} and nB = 1. If A−(i) = ∅, then the bestassignment of Zm is to 
luster C−, that is B−(i) = {Zm}. Otherwise C− = A−(i)∪B−(i) = ∅will make the N
ut value in�nity. Hen
e the algorithm 
orre
tly sets B−(i) = {Zm}.If A−(i) 6= ∅, then the best assignment is the one of B−(i) = {Zm} and B+(i) = {Zm}minimizing the N
ut. The former has already been 
omputed and 
orresponds to the 
urrent
ut value. So the algorithm returns the 
orre
t assignment and is thus 
orre
t for nB = 1.67



Indu
tive Step. Now, assuming that bbn
ut is 
orre
t for nB, let us see that bbn
utis 
orre
t for nB + 1 as well (provided m > nB, otherwise we are �nished anyway). Let
i = m − nB, so we know that bbn
ut gives a 
orre
t solution for all i′ with m ≥ i′ > i.We will 
onsider the possibilities of failure one by one. First, we show that if we rea
hthe re
ursion (Step 4), then the 
orre
t solution is returned. Then we look at the pruning
riteria in Step 3 and show that they are only met if no improvement is possible in the
urrent bran
h. Hen
e we always rea
h the re
ursion if the 
urrent bran
h 
ontains a betterpartition. As to pruning, we �rst investigate the dire
t 
riteria I.
 and I.v, and then the
omponents α′ (II.
) and β′ (II.v) of the lower bound.Assume that no pruning 
riterion is met and we are in Step 4. The assignment of nodesup to Zi−1 is �xed. The best solution is then the best of those assignments in 
onformitywith either (A−(i)∪{Zi},A+(i)) or (A−(i),A+(i)∪{Zi}). Thus, take the better of the bestsolution for ea
h su
h sub-assignment, that means of bbn
ut(A−(i)∪{Zi},A+(i),B(i+1))and bbn
ut(A−(i),A+(i)∪{Zi},B(i+1)). The re
ursive 
alls return the 
orre
t solutions bythe 
orre
tness for i′ > i. Hen
e, the 
orre
t solution is returned if the bran
hing 
riterionis ful�lled in Step 4.If the 
urrent assignment C− = A−(i) ∪ B(i), C+ = A+(i) is the optimal solution (i.e.
B+(i) = ∅), it will either be returned in the re
ursion (B−(i) = B(i), by the 
orre
tness for
nB), or by skipping the re
ursion.So only one possibility of failure remains: Assume the best solution fn is C− = A−(i) ∪
B−

∗ , C+ = A+(i) ∪ B+
∗ with B+

∗ 6= ∅, but the re
ursion is skipped be
ause some pruning
riterion is met in Step 3. That means either both I.
 and I.v are not satis�ed, or θl ≥ θu, so
α′ or β′ is no lower bound. We demonstrate that this assumption leads to a 
ontradi
tionfor both I and II. Let θu be the N
ut value of the best solution en
ountered so far, so
Ncut(fn) = Ncut(A−(i) ∪ B−

∗ ,A+(i) ∪ B+
∗ ) < θu. Denote by α∗ and β∗ the 
ut and volumeterms for fn, respe
tively. The 
urrent N
ut is Ncut(A+(i),A−(i) ∪ B(i)) > Ncut(fn). Inthe following treatments, we always 
onsider the sets for i, so we leave out this index fornotational simpli
ity.Dire
t 
riteria (I) Assume that both I.
 and I.v are not ful�lled.I.
 Condition I.
 implies that s̄(A−, Zj) > s̄(A+, Zj) for all Zj ∈ B, so

α∗ = s̄(A+,A−) + s̄(A+,B−
∗ ) + s̄(A−,B+

∗ ) + s̄(B−
∗ ,B+

∗ )

> s̄(A+,A−) + s̄(A+,B−
∗ ) + s̄(A+,B+

∗ )

= α(A+,A− ∪ B). (3.4.5)The last term is the 
urrent 
ut term.I.v From I.v, we know that vol(A+) > vol(V )/2, so the addition of any node to A+
an only in
rease the 
urrent volume term. Hen
e, β∗ is greater than the 
urrent
β:

β∗ > β(A+,A− ∪ B). (3.4.6)Equations (3.4.5) and (3.4.6) imply that
Ncut(fn) = α∗β∗ > α(A+,A− ∪ B) · β(A+,A− ∪ B),a 
ontradi
tion to fn's optimality.Lower bound (II) The se
ond possibility is that θl ≥ θu > Ncut(fn), so the lower boundis in
orre
t. By looking �rst at α′ and then at β′, we show that this 
ontradi
ts theoptimality of fn. 68



II.
 For the 
ut term, we distinguish two sub
ases, (i) C− does not have a �xedmember yet (A− = ∅), or (ii) some points in A are labeled −1. If A− = ∅, atleast one node in B must remain in C−. So s̄(A+, B−
∗ ) ≥ minj≥i s̄(A+, Zj) andit is

α′ = s̄(A+,A−) + min
Zj∈B

s̄(A+, Zj)

≤ s̄(A+,A−) + s̄(A+,B−
∗ ) + s̄(B+

∗ ,A−) + s̄(B+
∗ ,B−

∗ ) = α∗.If A− 6= ∅, then any nonempty subset of B may be moved to C−, and hen
e the
ut value in
ludes at least the edges from this subset to the �xed A+, that is
s̄(B+

∗ ,A−) ≥ minj≥i s̄(Zj ,A−). This implies
α′ = s̄(A+,A−) + min

Zj∈B
s̄(Zj ,A−)

≤ s̄(A+,A−) + s̄(A+,B−
∗ ) + s̄(B+

∗ ,A−) + s̄(B+
∗ ,B−

∗ ) = α∗.It follows that in any 
ase, we have α′ ≤ α∗, so α′ is indeed a lower bound.II.v So only the volume term remains. If vol(A) ≤ vol(V )/2, then β′ is set to theminimum possible 4/ vol(V ), and thus β′ ≤ β∗. Otherwise
β′ = min

j≥i

{
(vol(A+) + d(Zj))

−1 + (vol(V ) − vol(A+) − d(Zj))
−1
}

≤ (vol(A+) + vol(B+
∗ ))−1 + (vol(V ) − (vol(A+) + vol(B+

∗ )))−1 = β∗be
ause h(x) = 1/x+1/(1−x) is stri
tly monotoni
ally in
reasing on [0.5, 1] and
B+

∗ 6= ∅. So in any 
ase β′ ≤ β∗.The assumption θu ≤ θl together with the 
on
lusions α′ ≤ α∗ and β′ ≤ β∗ impliesthat
θu ≤ θl = α′β′ ≤ α∗β∗ = Ncut(fn),a 
ontradi
tion to fn being better than the best solution en
ountered so far.In summary, both the violation of both dire
t 
riteria and the in
orre
tness of θl lead to a
ontradi
tion. So, if fn is optimal, we will rea
h the re
ursion in Step 4.This means that if the optimal solution has sub-assignments (A−(i),A+(i)) and B+

∗ 6= ∅,the re
ursion is taken and the 
orre
t assignment returned. This argument 
ompletes theproof of 
orre
tness for nB + 1, implying 
orre
tness for all nB < m by indu
tion.Corollary 7. Calling bbn
ut for i = 2 with A+ = {Z1} and θu being the Ncut value forthe partition C+ = {Z1}, C− = B(2) solves Ncut for the entire graph, {Z1, . . . Zm}.Proof. The 
orollary follows from Lemma 6 and the fa
t that �xing the label of Z1 doesnot �x the partition in any way: There are two instantiations of the optimal partition by amere swap of labels.3.4.3 Heuristi
sThe bran
h and bound strategy from above may be further improved by a number of heuris-ti
s. Note that both bran
h and bound as well as the following heuristi
s still guaranteea 
orre
t solution. In turn, they 
annot in�uen
e the worst-
ase runtime. Nevertheless,69



the average runtime is sped up, as we will demonstrate below. Let us �rst motivate someheuristi
s and show their in�uen
e.Re�e
tions about heuristi
s raise the question for fa
tors determining the runtime. Theworst 
ase, that we 
annot ex
lude 
ompletely, is the enumeration of all fun
tions in Fn.However, in average, �ni
er� 
ases, bran
h and bound helps to ex
lude subsets of Fn viapruning. So the earlier the pruning happens, the larger the subset that is ex
luded and thesmaller the set of 
andidate fun
tions remaining. Thus, we would like to identify a �useless�bran
h as soon as possible. Pruning is determined by two 
riteria, the dire
t 
onditions I.
and I.v, and the bounds θl and θu, that we hen
e try to satisfy soon:I.
 The 
ut 
riterion is satis�ed if the nodes in B are more atta
hed to A− than to A+.This is only possible if A− has a su�
ient size, or if all nodes in B that are 
loselyatta
hed to A− are moved to A as soon as possible.I.v The volume 
riterion requires for pruning that vol(A) ≥ vol(V )/2, hen
e A shouldgrow in volume early.
θu As the bound 
riterion is θl ≥ θu, a tight upper bound ex
ludes more bran
hes. Hen
e,try to a
hieve good quality values early.II.
 The 
ut bound α′ involves both A+ and A−, so it will be more dis
riminative if both

A+ and A− have signi�
ant size or, better, volume (as volume is related to edges).II.v The volume bound is only dis
riminative if vol(A) ≥ vol(V )/2, so A should grow involume early.The question is how to integrate as many of those demands as possible. Many require that
A or its subsets should grow fast, in volume or size. The number of nodes in A is the levelof the re
ursion, so it is not due to 
hange. The volume, however, grows fastest if we �x thelabel of the nodes with highest degree �rst. Both A+ and A− simultaneously grow earlyif the labels in A are approximately uniformly distributed over the volume. If the nodesare ordered non-in
reasingly by degree, then this 
ondition is satis�ed if the nodes in A arelabeled roughly alternately. In 
onsequen
e, the setsA+ andA− are approximately balan
edin volume in most subsets {Z1, . . . Zi−1} for varying re
ursion levels i. As a side e�e
t, thisstrategy may improve the lower bound θu with N
ut, as the volume balan
e is favored inthe subset A. If B is large in volume, this will of 
ourse not be the 
ase. Diminishing thesize of A− for better balan
ing (by number), however, 
ontradi
ts the requirement of I.
.But if high-degree nodes are labeled early, then B will be as small as possible in volume,thus in�uen
ing the balan
e as little as possible, while most other demands are met.So how 
an we realize this balan
ed labeling by degree? The algorithm itself leaves roomfor 
hanges in various pla
es:1. in the implementation: order of nodes, initial θu2. in the order of the pruning 
riteria3. in the order of the re
ursion in Step 4: bran
h �rst into gi = −1 or gi = +1; thisdetermines the labels in A in the earliest re
ursions4. reorder nodes in B at lower levels of the re
ursion (as it is quite 
ompli
ated to keeptra
k of the reorderings throughout re
ursions, we did not implement this possibility).70



The qui
k growth of A may be in�uen
ed in the implementation already. As we labelthe nodes in as
ending order by their number, we order them by degree, starting with theheaviest node. Thus, the higher the degree, the earlier a node will be moved to A.The order of the re
ursions in�uen
es the �rst labelings in A. In 
onse
utive re
ursionlevels, we alternately bran
h into the −1 and +1 bran
h �rst, that means on
e set gi = +1�rst and in the next level gi+1 = −1 �rst. This means that in the �rst path we take wealternately assign nodes to 
luster C− and C+ for a rough balan
ing. The better the �rstpartitions found, the tighter will be the the upper bound in early re
ursions. The alternationgoes hand in hand with the reordering of nodes by degree. Hopefully, this leads to earlytight upper bounds and dis
riminative pruning 
onditions.The dire
t pruning 
onditions are simpler to 
ompute than the lower bound, and theyare de�nitive. Hen
e it makes sense to test the improvement 
onditions I.
 and I.v before
omputing θl.The initial upper bound should be as tight as possible, but 
heap to 
ompute. One su
hpossibility is the minimum possible N
ut if one 
luster 
onsists of only one node. Withoutself-loops on any node (w(Xi, Xi) = 0 for all i), this value is
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xFigure 3.4.4: Fun
tion
x/(1 − x) is minimized bysmall x.

min
i

d(Xi)

(vol(G) − d(Xi))
+ 1.The fra
tion is minimized by the node Xi with the lowest de-gree, as Figure 3.4.4 illustrates. Thus, it only needs to beevaluated for the �rst node and the node with minimum de-gree. In view of this degree aspe
t, the heuristi
 start nodewith highest degree will de�nitely not be in a 
luster by itself.If, by 
han
e, θu already 
orresponds to the best 
lusterassignment fn, and this is not the separation of X1 we startwith, then the algorithm might prune the best sear
h path,be
ause it only follows a path if an improvement to θu is pos-sible. The algorithm will however still terminate soon, be
ausea good θu from the beginning prunes many sear
h paths immediately. We 
an then simply
ompare the N
ut value of the returned solution to θu. If it is larger, then we know thatthe assignment 
orresponding to the initial θu was the optimal one, that means one 
lusteronly 
onsists of a single node.So how do the heuristi
s behave in pra
ti
e, as the number n of nodes or the number kof neighbors in the k-nearest neighbor graph 
hanges? Figure 3.4.5 illustrates the runtimewithout bran
h and bound (`all'), 
ompared to bran
h and bound with the alternatingheuristi
 (BB) and with both alternation and sorted nodes (BBsort). The bran
h andbound algorithm always tested 
ondition I.
 and I.v before 
onsidering θl, and the initialupper bound was always set to 
utting o� the node with the lowest degree. All the �guresrefer to the mere optimization without any redu
tion of the fun
tion 
lass, so 2n partitionsare to 
onsider.The runtime (Figure 3.4.5) as well as the number of evaluations of N
ut and the numberof re
ursions (Figure 3.4.6) is drasti
ally redu
ed by bran
h and bound, and further bythe sorting heuristi
. The runtime in
reases with n but not mu
h with k, as Figure 3.4.5shows. The number k of neighbors in the graph a�e
ts the summation in evaluating N
ut.The in
rease in re
ursions in Figure 3.4.7 may be due to a later satisfa
tion of the pruning
riteria with higher k. If ea
h node has more 
onne
tions to neighbors, then the movementof one node may be more in�uential to the 
ut quality. The addition of neighbors makes71



more di�eren
e for smaller k, when the additional neighbors are 
lose enough to make edgesof signi�
ant weight.
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Figure 3.4.5: Runtime 
hanges, for in
reasing n with k = 5 neighbors (left), or in
reasing kwith n = 16 (right).
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Figure 3.4.6: Number of 
alls to N
ut (left) and bbn
ut (right) for in
reasing n with k = 5.In summary, the heuristi
s improve the average runtime, parti
ularly with respe
t to thenumber of nodes.3.5 ExperimentsAn important feature of nearest neighbor 
lustering is its statisti
al 
onsisten
y: for large
n, it reveals an approximately 
orre
t 
lustering. Its behavior on smaller samples is thesubje
t of the �rst set of experiments. In Se
tion 3.5.3 we will 
ompare the results of NNCto results from heuristi
s designed to dire
tly optimize the given obje
tive fun
tion Qn.Sin
e generalization is a key aspe
t in Learning Theory, we do not only 
ompare the valueof Qn of the solutions but also their generalizability in Se
tion 3.5.4.Even though the di�eren
es may be small in the limit for large samples, the 
hoi
e of thedistan
e 
an in�uen
e the performan
e of nearest neighbor 
lustering for smaller n. Hen
ein Se
tion 3.5.5 we 
ompare results for di�erent distan
e fun
tions.72



6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4
# 

N
cu

t e
va

lu
at

io
ns

k

all
BB
BBsort

6 8 10 12

1000

1500

2000

2500

3000

3500

4000

k

# 
re

cu
rs

iv
e 

ca
lls

 to
 b

bn
cu

t

 

 

BB
BBsort

Figure 3.4.7: Number of 
alls to N
ut (left) and bbn
ut (right) for in
reasing k with n = 16.A further impa
t on the results may be the number and sele
tion of seed points. Wetake a 
loser look at seed-related issues in Se
tion 3.5.6.3.5.1 Constru
tion of graphsIn the experiments, we use arti�
ial and real data. The arti�
ial data usually 
onsists ofpoints sampled from a mixture of Gaussians in Rd.The real data sets will be des
ribed in the following. If the data is not already given asa weighted or unweighted graph, a k-nearest neighbor graph is 
onstru
ted by 
onne
tingea
h node to its k 
losest neighbors (
f. Se
tion 1.2.2). The weight of edge (Xi, Xj) is givenby the Gaussian kernel (see Eq. (1.2.2)). In general, we use undire
ted graphs, that meansif edge (Xi, Xj) exists, then the graph also 
ontains edge (Xj , Xi) with equal weight. If theoriginal graph was dire
ted, we added a re
ipro
al edge of equal weight for ea
h edge in thegraph.3.5.2 Real data setsWe 
olle
ted graphs from several sour
es about a variety of data. Here we des
ribe thesour
e of the data in the experiments. If the resulting graphs were not 
onne
ted, we usedthe largest 
onne
ted 
omponent. Table 3.1 shows the number of nodes and edges for ea
hgraph.COSIN biologi
al dataThe COSIN website [
osin℄ provides weighted and unweighted networks from several sour
es.We use four su
h biologi
al networks.The heli
o data set is a protein-protein intera
tion network from Heli
oba
ter pylori andthus unweighted. The underlying data from 2000 and 2001 stems from the Database ofIntera
ting Proteins [Database of Intera
ting Proteins℄.The other protein-protein intera
tion network, e
oli.intera
tion, refers to E. 
oli. Thenodes denote proteins, and the edges 
on�rmed intera
tions. The data was 
reated in 2005in the Emili Lab [Butland et al., 2005℄.Metaboli
 pathways in E. 
oli are des
ribed by e
oli.metaboli
. Here, the nodes aremetabolites. Unweighted edges between nodes denote involvement in the same 
atalyti
73



rea
tion. The database was developed by Ma and Zheng [2003℄ based on the Kyoto En
y-
lopedia of Genes and Genomes (KEGG).Another protein-related network refers to protein folding. It des
ribes the 
onformationspa
e of a 20 residue antiparallel beta-sheet peptide. The 
onformations were sampled fromsimulations of mole
ular dynami
s. Snapshots along the traje
tory are grouped into nodesby se
ondary stru
ture. The edges refer to transitions between stru
tures. The network only
ontains 
onformations that o

ur at least 20 times in the simulation. The graph beta3s isa redu
ed version of this 
onformation network by Rao and Ca�is
h [2004℄.Other protein intera
tionsProtein intera
tions in Sa

aromy
es 
erevisiae are 
ontained in the protein network yeast-ProtInt from Barabási. The data is further des
ribed in Jeong et al. [2001℄.Other intera
tion networks from Sa

aromy
es 
erevisiae were used in [Tsuda et al.,2005℄. We downloaded four of their networks and used the largest 
omponent of ea
h. In
ontrast to the des
ription in the paper, all graphs are weighted. The �rst, protNW1, isbased on the Pfam domain stru
ture. A protein is represented by a 4950-dimensional binaryve
tor, in whi
h ea
h bit indi
ates the presen
e or absen
e of one Pfam domain. An edge is
reated if the inner produ
t of the two adja
ent node ve
tors ex
eeds 0.06. The edge weightis the inner produ
t. The 
o-parti
ipation of the node proteins in 
omplexes, determined bytandem a�liation puri�
ation, is 
ontained in protNW2. Two nodes are 
onne
ted if thereis a bait-prey relationship between them. Physi
al protein-protein intera
tions are 
overedby protNW3. The last network, protNW4, des
ribes geneti
 intera
tion of the proteins. Adetailed des
ription of the original data 
an be found in Lan
kriet et al. [2004℄.Mi
roarray DataThe 
ell
y
le network is based on a mi
roarray data set from Spellman et al. [1998℄. Thestudy investigates genes whose expression levels vary periodi
ally with the 
ell 
y
le. Weuse their sele
tion of 800 genes that meet the authors' 
riterion for 
ell 
y
le regulation. Ofthose genes, we deleted the three with the most missing values (where more than half the
olumn entries were missing). One gene in the list was not in the data set. The data wasprepro
essed as des
ribed in the paper, referring to Eisen et al. [1998℄. Ignoring the missingvalues, the 
olumns (features) were standardized and, as a measure of similarity, the innerprodu
t (
orrelation) for all genes 
omputed, again ignoring the missing values. From theresulting 
orrelation matrix C, the Eu
lidean distan
es were taken as √2 − 2C (entry-wisesquare root). The rest of the pro
ess was the same as for the other data sets. A modi�edversion of Matlab's k-means algorithm used the Eu
lidean distan
es derived from C andtook a random sele
tion of the data points as initial 
enters.Psy
hophysi
s: leaf 
onfusion matri
esThe leaf 
onfusion matrix C, kindly provided by Frank Jäkel (unpublished data), is rathersmall and the result of a psy
hophysi
s experiment. The subje
t had to de
ide whetherthe presented leaf was leaf i or not. Entry C(i, j) represents the number of times thesubje
t identi�ed leaf j as leaf i divided by the number of times leaf j was presented. Wesymmetrized this matrix by setting W = C+C′, and either set the diagonal to zero (
onfus)or allow self loops (
onfusN ). 74



COSIN AS Internet graphsThe AS- graphs from COSIN [
osin℄ represent the �Autonomous Systems topology of theInternet�. The nodes are autonomous systems, and an edge indi
ates a physi
al 
onne
tionbetween two systems. The underlying BGP data has been 
olle
ted by the University ofOregon Route Views Proje
t, and is available at the �Global ISP inter
onne
tivity by ASnumber� webpage [Measurement and Team℄ of the National Laboratory of Applied NetworkResear
h. Self loops and parallel edges were removed in the graphs at COSIN, whi
h are inLEDA format. We use the smallest graphs in the 
olle
tion, from 1997/11/08, 1998/04/02,1998/07/03, 1998/10/02, 1999/01/14 and 1999/04/02.Data from Newman's 
olle
tionA power network, 
oauthorships and politi
al blogs are des
ribed by three graphs fromMark Newman's 
olle
tion [Newman℄. The topology of the Western States Power Grid ofthe United States forms the unweighted and undire
ted power graph [Watts and Strogatz,1998℄.The nets
ien
e graph represents 
oauthorship of s
ientists working on network theoryand experiments. It was 
ompiled from bibliographies of two review arti
les, with somereferen
es added by hand [Newman, 2006℄.Politi
al blogs from the 2004 presidential ele
tion in the United States form the basis forthe polblogs network by Adami
 and Glan
e [2005℄. Links between the blogs were extra
tedfrom a 
rawl of the front page of the blogs and the posts. The study aimed to investigateintera
tions between liberal and 
onservative blogs as well as the stru
tures of the two
ommunities.EmailsThe email network from Arenas represents the email inter
hanges between members of theUniversity Rovira i Virgili in Tarragona [Guimera et al., 2003℄.UCI data setsIn 
ontrast to the graphs des
ribed so far (ex
ept 
ell
y
le), the UCI data sets are ve
torial,giving features or 
oordinates for ea
h node. For a graph representation, we 
onstru
ted
k-nearest neighbor graphs from this data, using Eu
lidean distan
es. The breast
an
er,diabetis, german, heart, image, spli
e and thyroid data sets are provided at [Räts
h℄. Thedata was used like that in [Mika et al., 1999℄ and [Räts
h et al., 2001℄.In addition, we downloaded data dire
tly from the UCI repository [u
i℄. For the breast-
an
er-wis
onsin data (b
w), points with missing values were removed. We also use theBUPA liver-disorders (bupa), ionosphere and pima-indians-diabetes (pima) sets. In ea
hdata set, we standardized the features.Note that these data are ben
hmark data for 
lassi�
ation. They do not ne
essarily havea 
lear stru
ture for 
lustering whi
h might otherwise be the intuitive �best� solution.USPS handwritten digitsThe United States Postal Servi
e provides a database of handwritten digits from zero tonine. For experiments with two 
lusters, we 
onstru
t graphs from pairs of two 
onse
utivedigits: zero and one, two and three, four and �ve, six and seven and eight and nine. Again,the features were standardized. 75



data n |E|e
oli.intera
tion 230 695 ue
oli.metaboli
 563 709 uheli
o 710 1,450 ubeta3s 1,287 23,948 wyeastProtInt 1,458 1,948 uprotNW1 641 9,791 wprotNW2 970 1,819 wprotNW3 944 1,536 wprotNW4 499 757 w
ell
y
le 797 8,990 (k = 7) w
onfus 26 588 w
onfusN 26 614 wAS-19971108 3,015 5,156 uAS-19980402 3,522 6,324 uAS-19980703 3,797 6,936 uAS-19981002 4,180 7,768 uAS-19990114 4,517 8,376 uAS-19990402 4,885 9,276 unets
ien
e 379 914 wpolblogs 1,222 16,714 upower 4,941 6,594 uemail 1,133 5,451 ubreast
an
er 257 2,012 (k = 6) wdiabetis 768 7,626 (k = 7) wgerman 1,000 10,360 (k = 7) wheart 270 2,342 (k = 7) wimage 2,086 22,122 (k = 8) wspli
e 2,990 47,390 (k = 9) wthyroid 215 1,752 (k = 6) wb
w 683 7,220 (k = 7) wbupa 345 2,968 (k = 6) wionosphere 351 3,492 (k = 6) wpima 768 7,626 (k = 7) wUSPS 0 vs. 1 2,822 33,588 (k = 8) wUSPS 2 vs. 3 1,753 20,558 (k = 8) wUSPS 4 vs. 5 1,568 18,870 (k = 8) wUSPS 6 vs. 7 1,626 19,046 (k = 8) wUSPS 8 vs. 9 1,529 18,660 (k = 8) wTable 3.1: Number of nodes and edges in the graphs we used in the experiments. The letter`u' indi
ates that the graph is unweighted, `w' means `weighted'.
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3.5.3 Performan
e on the training setWe �rst 
ompare the performan
e of Nearest Neighbor 
lustering, on given graphs or k-nearest neighbor graphs from subsets of real data, with that of an algorithm designed todire
tly optimize the quality fun
tion Qn. As to obje
tive fun
tions, we 
on
entrate onN
ut and the within-sum-of-squares, WSS. The former is dire
tly minimized by normalizedspe
tral 
lustering (SC, for an overview of spe
tral 
lustering see e.g. [von Luxburg, 2006℄).The latter 
riterion is the obje
tive of the k-means algorithm.Note that the restri
tion of the k-means algorithm to 
oordinate data makes it inap-propriate for dire
t network data. Hen
e we only use WSS on the numeri
 ve
torial datasets.Here, we fo
us on �nding two 
lusters from neighborhoods around m = lnn randomly(uniformly) 
hosen seed points. For the neighborhoods, a node is assigned to its 
losest seedby 
ommute distan
e on the graph (
ommute distan
e was 
omputed with the unnormalizedLapla
ian a

ording to the matrix formula, Equation 3.3.2). Ea
h algorithm was run with
r = 50 initializations. For NNC, �initialization� means the 
hoi
e of a set of seeds, whereasfor k-means it is the 
hoi
e of the initial 
luster 
enters. In spe
tral 
lustering (SC), themeans in the post-pro
essing step involving k-means may be 
hosen anew. Of those r runs,the solution with the lowest obje
tive is 
hosen.Network data network NNC SCCD HT ND SNDheli
o 0.159 0.183 0.167 0.167 0.159e
oli.intera
tion 0.060 0.112 0.060 0.060 0.060e
oli.metaboli
 0.029 0.029 0.029 0.029 0.036beta3s 0.003 0.003 0.003 0.003 0.003yeastProtInt 0.035 0.035 0.035 0.040 0.056protNW1 0.000 0.000 0.000 0.000 0.000protNW2 0.017 0.023 0.017 0.017 1.009protNW3 0.006 0.007 0.006 0.007 0.008protNW4 0.011 0.011 0.011 0.011 0.013
onfus 0.360 0.373 0.360 0.360 0.360
onfusN 0.220 0.220 0.220 0.220 0.220AS-19971108 0.016 0.017 0.016 0.016 0.016AS-19980402 0.013 0.014 0.013 0.013 1.006AS-19980703 0.021 0.098 0.021 0.021 0.021AS-19981002 0.040 0.050 0.040 0.088 0.039AS-19990114 0.081 0.055 0.057 0.051 0.051AS-19990402 0.111 0.133 0.059 0.055 0.097nets
ien
e 0.009 0.009 0.009 0.009 0.009polblogs 0.111 0.111 0.111 0.111 0.111power 0.003 0.003 0.003 0.004 0.005email 0.265 0.257 0.273 0.279 0.266Table 3.2: N
ut values for the solutions a
hieved with NNC and spe
tral 
lustering on thenetwork data. The distan
e fun
tions are: 
ommute distan
e (CD), hitting time (HT),normalized 
ommute distan
e (ND), and symmetri
 normalized 
ommute distan
e (SND).77
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Figure 3.5.1: N
ut results for NNC with 
ommute distan
e and spe
tral 
lustering, for thebiologi
al (left) and other networks (right).Table 3.2 
ompares the results of NNC with various distan
es and spe
tral 
lustering(SC) on the networks. Figure 3.5.1 illustrates the di�eren
es for the 
ommute distan
e. Thein�uen
e of the distan
es is dis
ussed in greater detail in Subse
tion 3.5.5. In general, theresults of NNC and SC are 
omparable despite the simpli
ity of the NNC algorithm.Given that NNC has been proved to be 
onsistent, but not (yet?) SC, one would expe
tthe solutions returned by the algorithms to di�er at least to some degree. In general, theydo di�er, but sometimes not very mu
h. This may be due to the relation of the 
ommutedistan
e and spe
tral 
lustering: both use the eigenve
tor(s) of the Lapla
ian to re
ognize�
loseness�.In general, it is di�
ult to a
tually evaluate a 
lustering with respe
t to how reasonable itis for the given data. Hen
e, let us look at a small example, where the solutions hardly di�er:the leaf 
onfusion matrix. Figure 3.5.2 shows the leafs and lists the groupings. Withoutself loops in the graph, both algorithms yield the same solutions. If self loops are allowed,the results do not 
hange for spe
tral 
lustering and the SND distan
e, and di�er by theassignment of node one (leaf 2) for the 
ommute and ND distan
es. The di�eren
e betweenthe 
ut values is, however, minimal. Moreover, the 
lustering is also visually reasonable:the leaves are grouped into leaves with big dents, su
h as maple leaves, and more globallyround-shaped or long leaves that are at most serrated.Sometimes, on the other hand, the Qn values for the solutions by NNC and SC di�ersubstantially, as for the protein network protNW2. They still di�er for networks 3 and 4,but not for network 1, where the N
ut is 40 · 10−5 for all variants. Why do these networksbehave so di�erently? One reason may be that the networks protNW2 to protNW4 are mu
hsparser than protNW1 (see Table 3.1). Another reason may be grounded in the stru
tureof the spe
trum of the graph Lapla
ians. The neighborhood stru
ture in NNC is based onthe distan
e fun
tion, whi
h is based on the spe
trum and eigenve
tors of the Lapla
ian.This stru
ture determines Fn and thus the solution of NNC. The 
ommute and hittingtimes sum up di�eren
es of eigenve
tor entries of L, weighted by the inverse eigenvalue (
f.Subse
tion 3.3). ND and SND use all eigenve
tors of a normalized Lapla
ian with a weight5.Spe
tral 
lustering, on the other hand, is limited to the lowest subset of the spe
trum of
Lrw, without weight on the eigenve
tors. Hen
e, if the spe
trum of Lrw is steep in the �rstpart, one would not expe
t the distan
es used by SC and NNC to di�er mu
h. With a �atter5The eigenvalues of Lrw and Lsym are the same [von Luxburg, 2006℄.78
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Figure 3.5.2: Leaves for the leaf 
onfusion matrix. Leaves 1, 13, 19 and 27 are notin
luded in the matrix. The NNC and SC 
lusterings then group (2, 4, 8, 16, 17, 18, 20)and (3, 5, 6, 7, 9, 10, 11, 12, 14, 15, 21, 22, 23, 24, 25, 26, 28, 29, 30). (image kindly provided byFrank Jäkel)
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Figure 3.5.3: Spe
tra of the un-normalized (top) and normalizedLapla
ians (middle) for proteinnetworks 1, 2 and 3. The bottomrow is the weighting 1/λ for thespe
trum of Lrw. Note that theaxes have been shifted for the in-verse spe
tra to make the graphsmore visible.
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spe
trum, however, a larger part of the eigenve
tors will re
eive signi�
ant weights for theCD, HT, ND and SND. This part, however, is not entirely 
onsidered in SC. As a result, thesolutions of the algorithms may di�er as well. Indeed, the spe
trum of Lrw in
reases fastestfor Network 1, as Figure 3.5.3 shows. The steepness of the spe
trum does not provide afull explanation though, be
ause the spe
trum for Network 2 seems to rise faster than thatfor Network 3 in the beginning. Another fa
tor may be the relative drop of weights: it islargest for Network 1, and smallest for Network 2. The striking plateau in the spe
tra forthe normalized and unnormalized Lapla
ians of Network 2 
ould also play a role, possiblyalso with respe
t to numeri
al stability.Coordinate data: k-NN and full graphsFrom the 
oordinate data, we 
onstru
ted k-nearest neighbor graphs with k = ⌈lnn⌉ andthe Gaussian kernel to transfer distan
e to similarities (see Subse
tion 3.5.1). The width σof the kernel was the overall mean distan
e of a point to its k-th nearest neighbor (σ1, ifmarked by `*') or the mean distan
e to the k nearest neighbors (σ2).For ea
h data set, we generated z = 40 training sets by subsampling n/2 points. Ea
halgorithm was repeated r = 50 times on ea
h training set, with di�erent random initial-izations. On ea
h set, the best of the r partitions (by the quality fun
tion) was taken asthe solution. Denote the quality value of run r by q(r). We report results in the formmeanz(minr q(r)) ± standdarddevz(minr q(r)).For N
ut, we 
ompare SC and NNC with the 
ommute distan
e on the nearest neighborgraph. The WSS is optimized by k-means on the one hand and NNC with Eu
lideandistan
es on the other, the latter to better resemble k-means and the obje
tive, both usingthe Eu
lidean distan
e.Only the 
ell
y
le data required a di�erent prepro
essing be
ause of missing values. SeeSe
tion 3.5.2 for further details. In 
onsequen
e, we obtained a matrix of dot produ
ts thatwas used to 
onstru
t the adja
en
y matrix of the graphs. A modi�ed version of Matlab's
k-means algorithm minimized the WSS for 
omparison.The �rst row for ea
h data set in Table 3.3 shows the N
ut and WSS values for thesolutions by NNC and SC or k-means (extensions expressed in the other rows are dis
ussedin the next subse
tion). The results of NNC and the 
omparison algorithms are, as for thenetworks, in the same range. For N
ut, NNC is better on some graphs, whereas for WSS,80



N
ut WSSNNC δ SC δ NNC k-means
ell
y
le* 0.10 ± 0.01 0.12 ± 0.02 0.78 ± 0.03 0.78 ± 0.030.15 ± 0.03 0.16 ± 0.02 0.78 ± 0.02 0.78 ± 0.030.19 ± 0.06 0.19 ± 0.04 0.80 ± 0.03 0.79 ± 0.02breast
an
er* 0.09 ± 0.02 0.11 ± 0.02 7.04 ± 0.21 6.95 ± 0.190.21 ± 0.07 2.35 0.22 ± 0.07 2.06 7.12 ± 0.22 7.12 ± 0.200.21 ± 0.10 2.37 0.21 ± 0.06 1.94 7.26 ± 0.23 7.18 ± 0.22diabetis* 0.03 ± 0.02 0.03 ± 0.02 6.71 ± 0.22 6.62 ± 0.220.05 ± 0.05 4.70 0.04 ± 0.03 3.07 6.72 ± 0.22 6.72 ± 0.220.06 ± 0.11 6.37 0.04 ± 0.03 2.73 6.91 ± 0.23 6.83 ± 0.22german* 0.02 ± 0.02 0.02 ± 0.02 18.56 ± 0.28 18.26 ± 0.270.03 ± 0.03 3.18 0.04 ± 0.08 NaN 18.45 ± 0.32 18.35 ± 0.30
∞ ∞ ∞ ∞ 18.90 ± 0.30 18.62 ± 0.29heart* 0.17 ± 0.02 0.18 ± 0.03 10.77 ± 0.47 10.65 ± 0.460.30 ± 0.07 1.80 0.28 ± 0.03 1.55 10.74 ± 0.46 10.75 ± 0.460.29 ± 0.10 1.74 0.26 ± 0.04 1.44 11.02 ± 0.50 10.98 ± 0.46image* 0.00 ± 0.00 0.05 ± 0.22 12.23 ± 0.72 12.17 ± 0.710.10 ± 0.30 ∞ ∞ ∞ 12.27 ± 0.73 12.24 ± 0.730.05 ± 0.22 ∞ 0.14 ± 0.34 ∞ 12.39 ± 0.72 12.33 ± 0.73spli
e* 0.44 ± 0.16 0.36 ± 0.10 69.89 ± 0.24 68.99 ± 0.240.66 ± 0.18 1.87 0.58 ± 0.09 1.80 69.18 ± 0.25 69.03 ± 0.24
∞ ∞ ∞ ∞ 70.48 ± 0.32 69.93 ± 0.27b
w* 0.02 ± 0.01 0.02 ± 0.01 3.98 ± 0.26 3.97 ± 0.260.08 ± 0.07 0.04 ± 0.01 3.98 ± 0.26 3.98 ± 0.26bupa* 0.13 ± 0.08 0.15 ± 0.09 4.29 ± 0.30 4.26 ± 0.31
∞ ∞ionosphere* 0.04 ± 0.01 0.06 ± 0.03 25.77 ± 1.63 25.72 ± 1.630.14 ± 0.12 0.12 ± 0.11 25.77 ± 1.63 25.76 ± 1.63pima* 0.03 ± 0.03 0.03 ± 0.03 6.73 ± 0.23 6.62 ± 0.220.09 ± 0.13 0.05 ± 0.04 6.73 ± 0.23 6.73 ± 0.23usps0v1 0.00 ± 0.00 0.00 ± 0.00 160.76 ± 5.03 160.47 ± 5.040.01 ± 0.02 198.17 0.00 ± 0.00 1.24 160.50 ± 5.04 160.51 ± 5.04usps2v3 0.04 ± 0.01 0.05 ± 0.01 224.14 ± 2.97 222.01 ± 2.940.05 ± 0.02 1.30 0.06 ± 0.01 1.18 222.29 ± 2.95 222.14 ± 2.95usps4v5 0.02 ± 0.00 0.02 ± 0.00 215.72 ± 3.45 214.64 ± 3.420.04 ± 0.04 2.19 0.02 ± 0.00 1.28 214.74 ± 3.42 214.74 ± 3.42usps6v7 0.00 ± 0.00 0.00 ± 0.00 186.28 ± 5.06 186.16 ± 5.050.01 ± 0.02 19.62 0.00 ± 0.00 1.19 186.17 ± 5.05 186.17 ± 5.05usps8v9 0.04 ± 0.01 0.04 ± 0.01 224.13 ± 8.45 220.59 ± 8.410.10 ± 0.21 2.61 0.09 ± 0.18 7.12 224.23 ± 7.73 222.50 ± 7.86Table 3.3: Results for 
oordinate data with k-NN graphs. The �rst row shows the meantraining performan
e, the se
ond and third show performan
e on the test set with point-wiseand `nln' extensions, respe
tively (Extensions are dis
ussed in Subse
tion 3.5.4). δ is themean of the quotient between test and training performan
e on the test set. The width ofthe Gaussian kernel was σ1 for those graphs marked by `*', and σ2 for the others. For thenln extension, it was σ2 for all. Note: The NNC 
ode for N
ut had a small bug here. The
orre
ted values are in Table B.1 in the Appendix. They do not di�er mu
h, though, onlythat NNC is a
tually better than here. 81



Table 3.4: Results for full graphs of 
oordi-nate data. The �rst line for ea
h graph isthe obje
tive value on the training set, these
ond line is the quality on the test set (bypoint-wise extension). N
utNNC SC
ell
y
le 0.69 ± 0.23 0.55 ± 0.180.65 ± 0.15 0.56 ± 0.18breast-
an
er 0.43 ± 0.21 0.34 ± 0.180.60 ± 0.05 0.58 ± 0.05diabetis 0.07 ± 0.07 0.04 ± 0.04
∞ ∞german 0.39 ± 0.19 0.23 ± 0.090.39 ± 0.18 0.31 ± 0.04heart 0.72 ± 0.04 0.69 ± 0.020.80 ± 0.10 0.70 ± 0.02image 0.00 ± 0.00 0.00 ± 0.00
∞ ∞spli
e 0.99 ± 0.00 0.97 ± 0.000.99 ± 0.00 0.97 ± 0.00the k-means algorithm is usually a little better or equivalent. Some of the graphs, however,admittedly had an unfavorable stru
ture. The k-nearest neighbor graph for german hasthree 
omponents, and the image graph has very low edge weights, down to a minimumnonzero value of 4.35 ·10−138. The Lapla
ian of usps0v1 is badly 
onditioned, so the resultsare questionable for this graph, too. The remaining data should be well-behaved.One might argue that the proof of 
onsisten
y assumes that the full spatial information,represented by exa
t distan
es, is available, whereas the pruning of edges to nodes otherthan the k nearest neighbors may introdu
e ina

ura
ies. Hen
e we also 
onstru
ted fullgraphs from some 
oordinate data sets. Table 3.4 summarizes the results (�rst row forea
h data set). Here, NNC performs a little worse than spe
tral 
lustering. The problemwith these full graphs is that the spe
trum often seems to be very biased to one point:for distan
es based on the spe
trum, su
h as the 
ommute distan
e, one single seed pointis the 
losest to almost all other points. In that 
ase, the resulting solution will be veryunbalan
ed. The fun
tion spa
e has been redu
ed in an unfavorable way. This does nothappen as strongly for the k-NN graphs. One reason may be that the additional many smalledges average out the high edge weights (when, for probability in the Markov 
hain, edgeweights are divided by the degree), and thus the graph is more similar to a 
lique than the

k-NN graph. In a 
lique, the 
uts are more equal and the stru
ture is weaker. Then theeigenve
tors 
orresponding to the end of the spe
trum of the unnormalized Lapla
ian arealso more prone to 
onverge to Dira
 fun
tions (
f. Se
tion 3.3). In fa
t, the ND and SNDdistan
es, motivated by the Dira
 problems, lead to better results here, whi
h sometimesrea
h the performan
e of spe
tral 
lustering.3.5.4 Generalization abilityAfter observing that NNC performs 
omparably to �dire
t optimization� algorithms on atraining set, we would like to measure the amount of over�tting indu
ed by the algorithms.For ea
h of the 
oordinate data sets we 
lustered n/2 points and extended the 
lusteringto the other n/2 points. Then we 
ompared the obje
tive fun
tion values on the test setlabeled by the extension. This experiment was also repeated z = 40 times, and in ea
hrepetition, the partition out of r = 50 initializations was 
hosen as fn.82



There are several possibilities of extension, for examplepoint-wise (pw) Add the test points one by one (separately) to the training set and assignthe label that leads to the lower obje
tive value on the n/2 + 1 points, leaving thelabels of the n/2 training points �xed.nearest labeled neighbor (nln) Label the entire test set at on
e by assigning to ea
htest point the label of its nearest labeled neighbor (nln). Closeness is measured by thedistan
e used to 
reate the neighborhoods.
losest 
luster 
enter With WSS and the k-means algorithm, one might also want toassign the test points to their 
losest 
luster 
enter. This yields, for our graphs, thesame results as the point-wise extension.
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(d) Average WSS value on the test set withpoint-wise extension, NNC versus k-meansFigure 3.5.4: Value of Qn with dire
t optimization and extension (from Tables 3.3 and B.1).All values are normalized by the obje
tive value for the respe
tive 
omparison algorithm(SC, k-means) on the training set. For WSS, the quality of the partition of the test setis similar to or even better than that of the training set, whereas for N
ut, the extension
omes with a greater relative loss.Table 3.3 shows that for the extensions, NNC is roughly 
omparable the other algorithms.This result questions our expe
tation of NNC being less prone to over�tting. The mostlikely explanation is that both k-means and spe
tral 
lustering already have reasonablygood extension properties. This may be due to the fa
t that, like NNC, both algorithms83




onsider only a sub
lass of all partitions: Voronoi partitions for k-means and partitionsindu
ed by eigenve
tors for spe
tral 
lustering.The value ∞ o

urs in the table if the extension generated an empty 
luster in one of the
z runs and N
ut is the 
riterion. The table also shows the mean ratio of the obje
tive valuesfor labeling via an extension versus running the algorithm dire
tly on the set as trainingset. This ratio is often worse for NNC than for SC. Note, however, that the NNC trainingquality values are in general lower than those for SC.Figure 3.5.4 illustrates the di�eren
e of training and extension qualities relative to thetraining performan
e of SC and k-means for some of the data in Table 3.3 for WSS andTable B.1 for N
ut. That means we divided the test quality by the training quality. WithN
ut, the extension appears to 
ome with a greater loss than with WSS. For the latter,NNC has a better test than training performan
e on some data sets. For k-means, this onlyo

urs on the spli
e data set. This slight de
rease or stagnation in the obje
tive from dire
tlabeling to extension for NNC, together with a simultaneous slight in
rease in the obje
tivevalue for k-means, equalizes the test performan
e of both algorithms.In summary, the 
ompared algorithms perform similarly with respe
t to extensions oftheir solutions. Similar results were a
hieved by an analogous 
omparison of NNC and SCwith the RatioCut quality fun
tion.More than 2 
lustersIn a setting like above, we tested the training and extension performan
e for three and four
lusters. Tables 3.5, 3.6 and 3.7 show the results. For N
ut, we used the 
ommute distan
eand point-wise extensions, and for WSS the Eu
lidean distan
e. For the latter, a point inthe test set was assigned to its 
losest 
luster 
enter.The more 
lusters we sear
h for, the higher is the probability that one of these 
lusterswill not be assigned a point in the extension on the test set, parti
ularly in small data sets.The risk is probably even higher if the 
lusters of the training set are unbalan
ed. An empty
luster in the test set leads to an in�nite N
ut value. Therefore, the test performan
e is anaverage only over those repetitions in whi
h neither algorithm generated an empty 
lusteron the test set. For 
omparison, the tables also indi
ate the 
orresponding training error,averaged only over these non-in�nity runs.Apparently, the solutions of spe
tral 
lustering are more likely to end up with empty
lusters on the extension. Often, the extensions for SC seem to be worse than for NNC,possibly indi
ating an over�tting by SC. This tenden
y was less striking for only two 
lusters.In fa
t, judging from the averages in Figure 3.5.5, NNC performs better than SC on thetraining set but worse on the extension. The NNC extensions for more 
lusters, however,are equal to or better than those of SC, despite relatively worse training performan
e. Insome 
ases with K = 3, the training performan
e for NNC is worse than for SC, but theobje
tive on the extension is better. Note that with more 
lusters, the number of points per
luster is smaller. Maybe the advantages of NNC against over�tting 
ome more into playin su
h a setting.With the WSS obje
tive, the training and test performan
e of NNC is mostly slightlyworse than that of k-means. Nevertheless, the same tenden
y as for two 
lusters appears:Whereas the value of Qn is often lower on the extension than on the training set for NNC,the opposite is the 
ase for k-means, 
losing the gap between the performan
e of NNC and
k-means. Looking at Figure 3.5.5, this relative di�eren
e between the algorithms on trainingand test set seems to be
ome stronger on average.In summary, these experiments demonstrate that NNC's solutions are 
omparable to84



NNC SCdistan
e Qn δ %∅ Qn δ %∅ED 0.74 ± 0.07 0.47 ± 0.051.06 ± 0.41 1.48 7.5 1.40 ± 0.48 3.03 27.5CD 0.57 ± 0.09 0.47 ± 0.051.12 ± 0.45 1.98 7.5 1.43 ± 0.49 3.09 27.5HT 0.83 ± 0.22 0.47 ± 0.051.33 ± 0.42 1.78 22.5 1.37 ± 0.52 3.01 27.5ND 0.50 ± 0.06 0.47 ± 0.051.02 ± 0.44 2.05 10.0 1.43 ± 0.48 3.05 27.5SND 0.48 ± 0.05 0.47 ± 0.051.07 ± 0.48 2.23 12.5 1.38 ± 0.47 2.97 27.5Table 3.5: N
ut results for NNC and spe
tral 
lustering for 4 
lusters on the 
ell
y
le data.The �rst line is Qn on the training set, the se
ond Qn on the test set labeled by point-wise extension. δ is the average ratio between test and training performan
e and %∅ theper
entage of the z runs in whi
h the extension 
reated an empty 
luster. The average Qnvalue on the extension is only over runs with nonempty 
lusters. The kernel width was σ1.Obviously, the results for NNC depend on the distan
e used. The extension of SC's solutionis more likely to 
reate empty 
lusters.NNC SC NNC k-meansdata Qn %∅ Qn %∅ Qn %∅ Qn %∅b
w 0.08 ± 0.02 0.09 ± 0.02 3.28 ± 0.17 3.24 ± 0.170.08 ± 0.02 0.08 ± 0.02 3.28 ± 0.17 3.24 ± 0.170.43 ± 0.31 22.5 0.43 ± 0.38 37.5 3.30 ± 0.19 0.0 3.32 ± 0.21 0.0ionosphere 0.12 ± 0.04 0.15 ± 0.05 23.39 ± 1.68 23.18 ± 1.670.12 ± 0.04 0.14 ± 0.05 23.39 ± 1.68 23.18 ± 1.670.44 ± 0.33 12.5 0.63 ± 0.38 30.0 23.73 ± 1.65 0.0 23.71 ± 1.67 0.0pima 0.13 ± 0.05 0.11 ± 0.03 5.86 ± 0.22 5.65 ± 0.210.12 ± 0.03 0.11 ± 0.02 5.86 ± 0.22 5.65 ± 0.210.20 ± 0.19 10.0 0.35 ± 0.41 45.0 5.73 ± 0.20 0.0 5.68 ± 0.21 0.0breast
an
er 0.22 ± 0.05 0.25 ± 0.05 6.08 ± 0.17 5.89 ± 0.150.22 ± 0.05 0.25 ± 0.05 6.08 ± 0.17 5.89 ± 0.150.60 ± 0.31 7.5 0.79 ± 0.32 5.0 6.03 ± 0.18 0.0 5.98 ± 0.17 0.0diabetis 0.12 ± 0.05 0.11 ± 0.04 5.84 ± 0.24 5.63 ± 0.230.12 ± 0.05 0.11 ± 0.03 5.84 ± 0.24 5.63 ± 0.230.18 ± 0.09 15.0 0.32 ± 0.39 52.5 5.72 ± 0.24 0.0 5.68 ± 0.24 0.0heart 0.44 ± 0.06 0.42 ± 0.06 9.97 ± 0.34 9.71 ± 0.330.44 ± 0.06 0.42 ± 0.06 9.97 ± 0.34 9.71 ± 0.330.94 ± 0.31 2.5 0.85 ± 0.19 0.0 9.98 ± 0.35 0.0 9.97 ± 0.35 0.0Table 3.6: Training and extension results for 3 
lusters and N
ut (left) and WSS (right).The �rst line is the average training error on all z repetitions, the se
ond line the trainingerror on only those repetitions where the extension did not end up with an empty 
luster,and the third line is Qn on the test set labeled by point-wise extension (N
ut) or assignmentto the 
losest 
enter (WSS). 85



NNC SC NNC k-meansdata Qn %∅ Qn %∅ Qn %∅ Qn %∅b
w 0.15 ± 0.03 0.17 ± 0.04 2.93 ± 0.16 2.81 ± 0.140.16 ± 0.04 0.17 ± 0.04 2.93 ± 0.16 2.81 ± 0.140.61 ± 0.43 47.5 0.49 ± 0.24 30.0 2.86 ± 0.13 0.0 2.84 ± 0.14 0.0ionosphere 0.23 ± 0.06 0.26 ± 0.07 21.39 ± 1.77 21.10 ± 1.710.24 ± 0.06 0.27 ± 0.09 21.39 ± 1.77 21.10 ± 1.711.02 ± 0.60 35.0 0.88 ± 0.53 35.0 21.46 ± 1.74 21.40 ± 1.72pima 0.33 ± 0.07 0.33 ± 0.05 5.33 ± 0.20 5.06 ± 0.180.33 ± 0.05 0.33 ± 0.04 5.33 ± 0.20 5.06 ± 0.180.72 ± 0.41 15.0 1.12 ± 0.69 47.5 5.20 ± 0.21 0.0 5.14 ± 0.21 0.0breast
an
er 0.38 ± 0.07 0.40 ± 0.06 5.54 ± 0.17 5.31 ± 0.150.37 ± 0.08 0.39 ± 0.06 5.54 ± 0.17 5.31 ± 0.151.14 ± 0.56 15.0 1.27 ± 0.47 17.5 5.59 ± 0.17 0.0 5.52 ± 0.16 0.0diabetis 0.34 ± 0.07 0.33 ± 0.05 5.30 ± 0.21 5.04 ± 0.190.34 ± 0.07 0.32 ± 0.05 5.30 ± 0.21 5.04 ± 0.190.82 ± 0.35 20.0 0.90 ± 0.53 50.0 5.19 ± 0.25 0.0 5.13 ± 0.21 0.0heart 0.82 ± 0.10 0.74 ± 0.09 9.36 ± 0.33 8.99 ± 0.320.82 ± 0.10 0.74 ± 0.09 9.38 ± 0.30 9.01 ± 0.291.74 ± 0.42 15.0 1.70 ± 0.39 25.0 9.42 ± 0.37 2.5 9.35 ± 0.34 0.0Table 3.7: Clustering and extension results like in Table 3.6, but for 4 
lusters.
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Figure 3.5.5: Quality values (normalized by the performan
e of the 
omparison algorithmon the training data) on the training (left) and test sets (right) for 2, 3 and 4 
lusters forthe data in Tables 3.6 and 3.7. The obje
tive was N
ut (top) or WSS (bottom).86



CD HT ND SND
0

0.05

0.1

0.15

0.2

train test
0

0.05

0.1

0.15

0.2

 

 

ED
CD
HT
ND
SND

train test
0

1

2

3

4

5

 

 

ED
CD
HT
ND
SNDFigure 3.5.6: The distan
es' impa
t on the average obje
tive values on the training andtest sets. Left: Networks (Table 3.2), middle: N
ut for 
oordinate data (breast
an
er,diabetis, german, heart, image, spli
e, 
ell
y
le, the USPS sets, b
w, ionosphere, pima with

σ2), right: WSS for 
oordinate data (breast
an
er, diabetis, german, heart, image, spli
e,thyroid, 
ell
y
le with σ2).those of dire
t optimization algorithms even for more than two 
lusters, and they also showgood extension properties even on �nite graphs with a relatively small average number ofnodes per 
luster. The extensions of NNC's solutions even seem to be less likely to generateempty 
lusters.3.5.5 Distan
esSe
tion 3.3 introdu
es a 
hoi
e of distan
e fun
tions to use in Nearest neighbor 
lustering.In the following, we will analyze the impa
t of the di�erent distan
es on the out
ome of thealgorithm.By intuition, a distan
e must �t the obje
tive fun
tion in 
apturing the 
on
ept of�density�, �
loseness�, �
onne
tedness� inherent in Qn and the de�nition of a �good 
lustering�
Qn represents. In addition, the stru
ture of the parti
ular graph might play a role, too. Onwell-separated data sets, the distan
es may all be very similar. The di�eren
e between theEu
lidean and 
ommute distan
es, for instan
e, depends on the embedding: the distan
eswill di�er a lot in a graph that is shaped like a `C'. Hen
e, there is no universal solution tothe problem of whi
h distan
e suits best, and the exa
t 
orresponden
e between distan
eand quality fun
tion still remains a question to be answered.Distan
es and QnTables 3.2 and 3.5 of the obje
tive values on networks, training sets and extensions demon-strate that the quality of the 
lustering 
an depend on the distan
e.For N
ut, the Eu
lidean distan
e is usually the worst, be
ause it only 
overs distan
esin the embedding spa
e Rd, and not dire
tly the graph stru
ture with the existing edges.It is related to the edge weights by the Gaussian kernel, but many su
h edges were prunedin the graph. The other distan
es are related by the graph Lapla
ians, whi
h also form the
onne
tion to the relaxed N
ut problem that is solved by spe
tral 
lustering. They 
onsiderthe graph stru
ture via the Lapla
ian.These tenden
ies show up in Figure 3.5.6, whi
h 
ompares the average obje
tive valuesfor di�erent distan
es. The solutions were generated with the same seed sets. For N
ut,the 
ommute distan
e works best on average, for dire
t optimization and extensions of the
lustering. On k-nearest neighbor graphs, the Eu
lidean distan
e is least appropriate. The87



other distan
es are very similar on the networks (see also Table 3.2). The SND distan
edi�ers most between training and test: whilst Qn is rather low on the training set, it evenex
eeds the obje
tive for the Eu
lidean distan
e on the extension. This looks like over�tting,but may also be grounded in bad extension properties of SND, as it is also used to �nd thenearest neighbor for labeling the test points. Otherwise, CD, ND and SND are 
omparableon the training set and given networks, as is also the tenden
y in Table 3.5 for four 
lusters.CD, ND and the hitting time give, on average, the best solutions on the extension.The distan
e most in line with WSS is the Eu
lidean distan
e, as be
omes obvious inFigure 3.5.6. For WSS, performan
e is best with the Eu
lidean distan
e, even though theaverage di�eren
es between the distan
es are not great for the tested graphs.Properties of the neighborhoodsThe distan
e fun
tion de�nes Fn via the neighborhoods it helps to generate. It determineswhi
h seed a node is assigned to. Let us thus take a look at the properties of neighborhoods.
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Q
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Figure 3.5.7: Neighborhoods for Eu
lidean (left) and Commute distan
e (right) with the
orresponding best N
ut 
lustering (se
ond row). The third row is the best 
lustering witha di�erent set of seeds. There, the neighborhood stru
ture prevented a better 
ut.Figure 3.5.7 shows an example of neighborhoods in a toy graph with n = 300 pointssampled from two Gaussians. Whilst the neighborhoods with the Eu
lidean distan
e havea 
ir
ular shape, the neighborhood 
ells by 
ommute distan
e are more uneven, and 
an88
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CD
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MD
MDSFigure 3.5.8: Neighborhood properties for a sele
tion (see text) of the network graphs. Fromleft to right, top to bottom: Maximum and minimum normalized volume, maximum andminimum size (nodes), varian
e in volume and number of nodes, maximum diameter inper
ent of the diameter of the entire graph. The values are averages over 50 repetitions andthe di�erent graphs.here even be ring-shaped. A 
loser look at su
h plots reveals one problem: a neighborhood
rossing the region of low density rules out any 
ut through this area. Exa
tly this regionwith few edges, however, is the intuitive pla
e for a 
ut. The growing number of Voronoi
ells, resulting from an in
rease of n, will remedy this problem for large n.Apart from the toy graph, a further analysis of the neighborhood stru
ture seems inter-esting. How mu
h do the sizes of the 
ells vary? A very unbalan
ed distribution of neighbor-hood sizes may only leave unbalan
ed partitions in Fn that might result in empty 
lusterswhen extended on a test set. Therefore we 
omputed some properties of the neighborhoodson a sele
tion of graphs for r = 50 seed sets with di�erent distan
es. Of the networks, weused AS-19981002, AS-19980402, AS-19971108, heli
o, email, beta3s, protNW1-4, polblogs,e
oli.intera
tion, e
oli.metaboli
 and nets
ien
e, and of the 
oordinate data sets breast
an
er,
ell
y
le, diabetis and ionosphere.The �rst plot in Figures 3.5.8 and 3.5.9 shows the average volume of the smallest andlargest 
ell (by volume), normalized by 100 log(n)/ vol(G). The average maximum and min-imum size by number of nodes behaves similarly. For the networks, the di�eren
e betweenminimum and maximum size and volume seem to be even greater than for the 
oordinatedata sets. In fa
t, on eight of the �fteen graphs (AS-19981002, AS-19980402, AS-19971108,heli
o, email, beta3s, protNW2, polblogs), the smallest neighborhood by 
ommute distan
eand hitting time has an average volume of zero, so it 
onsists of one node only. The NDdistan
e leads to similarly small neighborhoods. On the 
oordinate sets, however, this wasnot the 
ase. It may be that the degree is more balan
ed in the k-NN graphs. One wouldexpe
t it to be better if the sizes vary not too mu
h but provide a basis for a balan
ed 
ut.89
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ED
CD
HT
MD
MDSFigure 3.5.9: Neighborhood properties like in Figure 3.5.8, but for 
oordinate data setsbreast
an
er, 
ell
y
le, diabetis and ionosphere.Parti
ularly, a 
ell of one node only does not intuitively seem like a helpful 
hoi
e.The third plot then illustrates the average varian
e in neighborhood volume and size. Onaverage, the Eu
lidean distan
e seems to generate the most equal 
lusters in size, whereasSND (for the networks) or the hitting time and ND (for 
oordinate data) 
reate the mostunequal ones. The larger varian
e of the HT in 
omparison to the CD is intuitively rea-sonable by the interpretations: for the HT, we assign a node to the seed it rea
hes fastest,independent of the return time. The CD 
onsiders both dire
tions and thus also takes ofthe density around the seed (
f. Subse
tion 3.3). The varian
e in volume, however, does notdire
tly 
ovary with the quality of the 
lusterings (Figure 3.5.6). For the sele
tion of networkgraphs, the best results were on average a
hieved with the 
ommute distan
e, whereas thehitting time seems less appropriate. This result is in part in 
onformity with the varian
eproperties. SND leads to less favorable results on some networks, but on average it seemsnot bad, 
ontrary to the average of the varian
e in neighborhood size.The last plot shows the average diameter of the 
ell with the largest diameter, in relationto the diameter of the entire graph (in per
ent). Apparently, the hitting time leads to themost spread-out neighborhoods. Strikingly, for almost all distan
es, the diameter of thelongest neighborhood 
ell is very 
lose or identi
al to the diameter of the graph, so the 
ellstret
hes over the entire graph. In view of the large varian
e in 
ell sizes, however, thisobservation be
omes less surprising.3.5.6 Sele
tion of seedsThe dependen
e of neighborhoods and 
luster quality on the distan
es raises the questionof the relation between the set of seeds and the 
lustering. Therefore we attempt to studythe 
orrelation of 
ertain properties of the set of seeds with the quality of the partition.90



What makes a �good� set of seeds?The �rst experiment investigates how di�erent measures on the seed set 
orrelate with theN
ut and R
ut value. The results for both quality fun
tions were similar, so we 
on
entrateon N
ut here. The neighborhoods were 
omputed with three distan
es: the 
ommute dis-tan
e, the hitting time from a seed to a node and the hitting time from a node to a seed.Apart from the graphs for thyroid (k = 6, σ = 10), heart (k = 8, σ = 100), USPS0vs1(k = 6, σ = 100), USPS2vs3 (k = 6, σ = 100), USPS8vs9 (k = 6, σ = 100), we used teninstan
es of ea
h of four toy graphs. The toy graphs were 
onstru
ted as nearest neigh-bor graphs with k = 5 neighbors. For the nodes, we sampled n1 and n2 points from twoGaussian distributions with means µ1, µ2, and varian
es Σ1, Σ2:1. µ1 = (0, 0), µ2 = (3, 3); Σ = I, n1 = n2 = 8002. µ1 = (0, 0), Σ1 = (0.5, 0; 0, 1); µ2 = (3, 0), Σ2 = (0.5, 0; 0, 2); n1 = 534, n2 = 10663. µ1 = (0, 0), Σ1 = (0.5, 0; 0, 1); µ2 = (3, 0), Σ2 = (0.5, 0; 0, 2); n1 = n2 = 8004. µ1 = zeros6(10, 1), Σ1 = diag([0.5, 0.5, 0.5, 1.0, 1.0, 1.0, 0.4, 0.4, 0.8, 0.8]), µ2 = 1.5 ·
ones(10, 1), Σ2 = diag([0.8, 0.4, 0.5, 1.0, 0.5, 0.6, 0.8, 1.0, 1.0, 0.4]); n1 = n2 = 800.We 
omputed the following measures and took averages over r = 100 randomly (uniformly)
hosen seed sets of size ⌈lnn⌉ for ea
h graph:1. Average degree of the seeds: If degree is seen as an estimate for density, this measureen
odes if a node is �
entral� within a 
luster or at the boundary where the densityde
reases. Is it better if the seeds are lo
ated within 
lusters or at the boundary? Therelative lo
ation of the sample points to ea
h other, though, is ignored.2. Varian
e of the degrees of the seed points, divided by the varian
e of the degrees ofthe entire graph: maybe it is better to have samples from regions of di�erent densities(en
oded by di�erent degrees)?3. Maximum 
ommute distan
e from a seed to a non-seed node: Intuitively, this is aworst-
ase measure how well the sample 
overs the data spa
e, that means how wellit is distributed.4. Maximum hitting time from a seed to a non-seed point: maxx∈S,y∈V \S H(x, y), where
S denotes the seed set. A motivation for this was Matthew's theorem [Aldous and Fill,2001, Thm. 26, Chapter 2℄ whi
h states that the maximum and minimum expe
ted
over time (over all verti
es) 
an be bounded by the maximum and minimum HTbetween any two verti
es, respe
tively.5. Maximum hitting time from a non-seed point to a seed point: maxx∈S,y∈V \S H(y, x)6. Average 
ommute distan
e between the seeds: This measure shows how distributedthe seed set is on average.7. Minimum 
ommute distan
e between the seeds8. Maximum 
ommute distan
e between the seeds6The ve
tors and matri
es are noted like 
alls to Matlab fun
tions to save spa
e.91



Figure 3.5.10:Average 
orre-lations of themeasures withN
ut. The xaxis refers tothe index of the
riterion. 1 2 3 4 5 6 7 8 9 10 11
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Toy data Real data9. Maximum 
ommute distan
e from a point to its 
losest seed point:
maxy∈V \S minx∈S C(x, y). This measure of maximum spread of a neighborhood isrelated to how well distributed the seeds are.10. Maximum hitting time from a seed point to a node that is assigned to it:
maxy∈V \S minx∈S H(x, y)11. Maximum hitting time from a node to the seed it is assigned to: maxy∈V \S minx∈S H(y, x).
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Figure 3.5.11: Correlation with �er-ror� for the toy graphs.
We 
omputed the Pearson 
orrelation of ea
hmeasure with the N
ut value and 
lassi�
ation er-ror. For the error, 
luster labels were taken as 
lasslabels and true labels 
orresponded to the distribu-tion a node was drawn from. The 
orrelation varieda lot from one graph to the other, so that a de�nitive
on
lusion was impossible from the obtained data. Inaddition, the data was mostly widespread, so that alinear relationship was at least not dire
tly obviousby visual judgment.In general, 
orrelations were stronger for the realdata sets than for the toy graphs. The latter werepossibly more regular. The average 
orrelations forthe arti�
ial and real data are partly 
ontradi
tory,as Figure 3.5.10 demonstrates. Measures 3, 5 and 8 
orrelate positively for the toy graphs,but negatively for the real data. Intuitively, we expe
ted a positive 
orrelation for 3 and 5,be
ause larger distan
es between seeds and the other points indi
ate that the seeds mightnot be well-distributed. On the other hand, these measures may be easily distorted byoutlier points. For Measure 8, one would expe
t a negative 
orrelation, if better distributedseeds 
reate more even neighborhoods. On the other hand, the largest maximum distan
eis realized if all seeds but one are 
on
entrated in one pla
e, and one outlier is far apart.The latter 
ould be the reason for the positive 
orrelation for the real data. In retrospe
t,Measure 8 
annot 
apture well the 
overing of the entire seed set.A rather strong 
orrelation on both sets is with the maximum 
ommute distan
e betweena node and the seed it is assigned to (Measure 9). The larger the distan
e, the more spreadis at least one neighborhood 
ell, and this seems to be negative for the 
luster quality.Surprisingly, the same measure with the hitting time from node to seed behaves di�erently.This observation indi
ates the di�eren
e between the 
ommute distan
e and its summandsbased on hitting time. 92



Measure 6, the average 
ommute distan
e between the seeds, 
orrelates negatively onboth sets. This is somewhat surprising, if the measure 
overs the spread of the seed set,be
ause one expe
ts well-distributed seeds to 
reate more even neighborhoods. Similarly toMeasure 8, an outlier 
ould though distort the average. Again, the exa
t lo
ation of theseeds is ignored but probably important.The 
orrelations with �
lassi�
ation error�, shown in Figure 3.5.11, are very similar tothose with N
ut in Figure 3.5.10.In sum, the 
orrelations were rather weak and di�use. Possibly the dire
t 
orrelationwas not the best measure. Moreover, we neither 
he
ked for 
ombinations of measuresnor nonlinear relations. This further analysis may have revealed more information, as it isprobably more than one fa
tor that 
ounts.Pi
king the seeds (non-uniformly) by degreeThe previous subse
tion demonstrates that it is hard to make out what exa
t properties a�good� set of seeds shows. The hope was that the quality of the partition by NNC 
ould beenhan
ed by a biased draw of the seeds.One simple 
riterion for seeds is their degree. Figures 3.5.10 indi
ates a slight negative
orrelation of the degree of the seeds with the N
ut value. Therefore we studied the e�e
t of
hoosing the seed nodes uniformly from the p% of V with the highest degree. The per
entagewas set to p = 100, 95, 80, 50, and 20. We 
onstru
ted nearest neighbor graphs (k = 5,
σ = 1.0) from n = 800 and n = 1600 points drawn from a mixture of two Gaussians. Thefollowing models were used:0 µ1 = (0, 0), µ2 = (3, 3), Σi = I.1 µ1 = (0, 0), µ2 = (3, 0), Σi = (0.5, 0; 0, 2).2 µ1 = (0, 0), µ2 = (3, 0), Σ1 = (0.5, 0; 0, 1), Σ1 = (0.5, 0; 0, 2).3 µ1 = (0, . . . , 0), µ2 = (1.5, . . . , 1.5), Σ1 = diag(0.5, 0.5, 0.5, 1.0, 1.0, 1.0, 0.4, 0.4, 0.8, 0.8),

Σ2 = diag(0.8, 0.4, 0.5, 1.0, 0.5, 0.6, 0.8, 1.0, 1.0, 0.4).For ea
h model, we generated 10 instan
es and repeated NNC with r = 100 seed sets on ea
h.The results in Figure 3.5.12 are averages over those runs, for ea
h model. The tenden
ieswere similar for n = 800 and n = 1600 nodes, thus we only show the �gures for the latter.
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Figure 3.5.12: Best N
ut value (left), average N
ut value (middle) and average volume ratioof the 
lusters (right) over r = 100 seed sets for 40 arti�
ially generated graphs from 4models with n = 1600 nodes. The x axis denotes p, number 0 to 3 are the graph numbers.The �rst plot illustrates the average best N
ut value for the r = 100 repetitions. Itremains roughly stable as p varies. The average N
ut value (middle plot), however, de
reases93



with the restri
tion of the seed 
andidates. Here, the graphs behave di�erently though: the
hange is minor for graphs 0 to 2, but large for graph 3, whi
h is higher-dimensional andmaybe well-separable. The rightmost plot displays the average ratio of the two 
lustervolumes, vol(C0)/ vol(C1), where vol(C0) < vol(C1). This ratio in
reases with the degreelimitation, indi
ating that the 
luster volumes be
ome more equal. Hen
e, there may be a
hange in the stru
ture of the neighborhoods.In 
on
lusion, even if the tenden
ies are small and depend on the graph, a bias of theseeds towards larger degrees seems to improve the partitions and make the volumes of the
lusters more balan
ed.Seed sets of varying sizeRe
all that the 
omplexity of the NNC algorithm is polynomial for a seed set of size c logn,where c is 
onstant. This 
onstant should be 
hosen wisely, though, as the size of Fn isexponential in c. The next experiment demonstrates how the partitions 
hange as c growsfrom 1 to 3. As expe
ted, the average N
ut values de
rease.Here we used the same graph models as in the previous subse
tion, generating again 10instan
es for ea
h model and sampling r = 100 seed sets for ea
h graph. We repeated thesame pro
edure for n = 800 and n = 1600 nodes. We always pi
ked ⌈c lnn⌉ seeds. The sizeof the seed set S determines the size of the fun
tion 
lass Fn. As it grows, we 
an 
hoose
fn from a larger variety of 
andidates and hen
e expe
t to a
hieve better obje
tive values.Note, however, that we did not investigate the extension properties of these partitions.
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Figure 3.5.13: Best N
ut value (left), average N
ut value (middle) and average volume ratioof the 
lusters (right) over r = 100 seed sets for 40 arti�
ially generated graphs from 4models with n = 1600 nodes. The x axis denotes c.As shown in the �rst plot in Figure 3.5.13, the N
ut value of best of the r partitionsdoes not 
hange mu
h as the seed set grows. The average N
ut value, on the 
ontrary,de
reases for all graphs (middle plot). So the probability of a
hieving a good 
ut by Qnis higher. As in the previous experiment with seed degrees, the tenden
ies are strongeston the higher-dimensional graph (Model 3). The rightmost plot demonstrates that, as thenumber of neighborhood 
ells in
reases, the volumes of the 
lusters be
ome more balan
ed.The balan
e of 
luster volumes is one 
riterion 
onsidered by the N
ut obje
tive. Thedependen
y of the volume ratio on c is reasonable, as a �ner 
ell stru
ture allows for abetter �ne-tuning of the 
ut and better balan
ing.On the whole, the observed tenden
ies are analogous to those in the previous experiment:both a bias in the degree of the seed nodes and a larger seed set lead to a higher probabilityof a
hieving a good partition (by N
ut as Qn), and to more balan
ed 
luster volumes.94



3.6 Summary and Dis
ussionIn this 
hapter, we presented an approa
h to 
lustering that aims to a
hieve statisti
al
onsisten
y by a redu
tion of the spa
e of 
andidate fun
tions. We only allowed fun
tionsthat are 
onstant on Voronoi tessellations of the spa
e. The result is an algorithm thatis statisti
ally 
onsistent and runs in polynomial time, moving the graph 
ut problem forobje
tives like N
ut and RatioCut from NP to P. In that regard, we a
hieved the goal ofsimplifying an NP-hard optimization problem based on re�e
tions from Statisti
al LearningTheory, repla
ing heuristi
s by 
ontrollable simpli�
ations.In addition, the proof of 
onsisten
y is stronger than results for other 
ommon 
lusteringalgorithms. Pollard [1981℄ proved that the minimizer of WSS on a �nite sample 
onvergesto the true global minimizer. But the k-means algorithm is not guaranteed to �nd thisminimizer. The solution of spe
tral 
lustering 
onverges to a limit 
lustering [von Luxburget al.℄, whi
h is, however, 
onje
tured to potentially deviate from the true minimizer of N
ut.Re
all that spe
tral 
lustering only solves a relaxed version of the N
ut problem, whereasNNC dire
tly optimizes Qn over Fn.Nevertheless, there is more than a theoreti
al side to ea
h algorithm. We showed howto improve the average running time of Nearest neighbor 
lustering by bran
h and boundand 
ertain heuristi
s. Experiments reveal that NNC performs roughly the same as dire
toptimization algorithms, on both training and test sets. Against our expe
tations, parti
u-larly for K = 2, it 
ould not outperform the 
omparison algorithms as to generalization. Areason may be that spe
tral 
lustering and k-means inherently redu
e the spa
e of 
andi-date fun
tions, similar to the dire
tly motivated restri
tion of NNC: k-means is limited toVoronoi tessellations of the data spa
e, and the solutions of spe
tral 
lustering are indu
edby some eigenve
tors of the Lapla
ian. The minimizer of WSS that we aim for with k-means
onverges to the true global minimizer. K-means is restri
ted to lo
al minima, but withthe r = 50 restarts we provided in the experiments, the 
han
es of getting a good partitionare rather high, espe
ially for two 
lusters, if there are not too many lo
al minima. Onthe other hand, given its simpli
ity, NNC performs surprisingly well. Its results apparentlyimprove, in 
omparison to SC or k-means, as the number K of 
lusters grows. As K grows,there might be more lo
al minima that at least k-means 
an get stu
k in.The approa
h followed by NNC leaves several dire
tions for further development: on theone hand, the algorithm 
an be optimized, for instan
e by the sele
tion of seed nodes toin
rease the probability of a �good� neighborhood stru
ture. On the other hand, the restri
-tion of Fn 
ould be done in a related, but more sophisti
ated way, su
h as by the 
ontinuityof 
andidate fun
tions, for example measured by some Lips
hitz 
onstant. Another big issuefor future work, also from a theoreti
al perspe
tive, is the mat
hing of the distan
e fun
tionwith the obje
tive.
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Chapter 4Con
lusionThe initial goal of the studies presented in this report was to modify an NP-hard optimizationproblem, namely graph 
uts for 
lustering, to gain in two respe
ts: First, we aimed to sim-plify the problem to ideally make it solvable in polynomial time. Instead of using a heuristi
without any guarantees on the solution, we took the viewpoint of Statisti
al Learning The-ory to simultaneously a
hieve a se
ond advantage: statisti
al 
onsisten
y. That means we
onsider the data as a sample from a larger distribution, and try to optimize the 
riterionfor the entire spa
e. Consisten
y ensures that the quality of the partition returned by thealgorithm will 
onverge to the quality of the global optimizer on the entire spa
e.To a
hieve these aims, we took two approa
hes: First, we added a penalty term, amargin, to the dis
rete obje
tive. Our margin 
onsiders robustness of the solution, thoughonly lo
ally. We stated the resulting problem as a �ow problem. However, only the relaxedversion is in P. In addition, some theoreti
al questions remain to be studied: To what kindof restri
tion of the fun
tion spa
e does the margin 
orrespond? Does it 
orrespond to the
omplexity of the fun
tion spa
e, and, if so, in what way? These are 
ru
ial questions withregard to proving 
onsisten
y.Se
ond, we restri
ted the spa
e of 
andidate fun
tions to those 
onstant on neighborhood
ells. The resulting algorithm is statisti
ally 
onsistent and runs in polynomial time. Itsperforman
e on �nite samples is 
omparable to that of standard algorithms su
h as spe
tral
lustering or k-means. This approa
h shows that the initial aim is a
hievable even with asimple algorithm. Now it 
an be extended in several dire
tions. The neighborhood 
riterionindu
es a 
ertain 
ontinuity 
onstraint. Analogously, more sophisti
ated restri
tions of Fare 
on
eivable, for instan
e by 
ontinuity 
riteria su
h as Lips
hitz 
onstants. Furthermore,the NNC algorithm 
an be improved by a more elaborate sele
tion of the seeds, whi
h maygive guarantees on the neighborhoods and thus Fn. The 
onstru
tion of the neighborhood
ells itself bears room for development, too. The mat
hing of the quality Q and the distan
efun
tion, for example, is also of theoreti
al interest.Note, however, that neither approa
h guarantees the stability of the partition itself,be
ause 
onsisten
y is de�ned with respe
t to the quality fun
tion. The study of stabilitywith respe
t to the partition fun
tions fn is another wide resear
h topi
.Nevertheless, the approa
hes presented here are a �rst example of how to 
ombine 
om-binatorial optimization and SLT. We are keen to see more involved methods and approa
hesto follow. 97
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Appendix ANotation and Abbreviations
V ⊆ X set of nodes
E set of edges
Ci ⊆ V i-th 
luster
Ci = V \ Ci set of nodes that are not in the i-th 
luster
K number of 
lusters
w : E → R, w ∈ W edge weights
s : X × X → R+ similarity fun
tion
f : V → {0, 1}, f ∈ F partition fun
tion
P 
omplexity 
lass of problems that 
an be solved in polynomial time(on a deterministi
 Turing Ma
hine)
NP 
omplexity 
lass (non-deterministi
 polynomial time) of de
isionproblems that 
an be solved in polynomial time on a non-deterministi
 Turing Ma
hineSC Spe
tral 
lusteringNNC Nearest Neighbor ClusteringWe use a generalized notation for sums of edge weights: let A ⊆ V and v ∈ V , then

w(v, A) =
∑

u∈A

w(v, u),and analogously for w(A, v) and w(A, B) with B ⊆ V . We also use the notation cut(A, B) =
w(A, B).Graph properties
vol(G) = vol(V ) = w(V, V ) volume of the graph
D ∈ Rn×n diagonal matrix of node degrees with D(i, i) = d(Xi)
W ∈ Rn×n symmetri
 matrix of edge weights
L = D − W graph Lapla
ian (see von Luxburg [2006℄ for properties of Lapla
ians)
Lrw = I − D−1W ∈ Rn×n normalized graph Lapla
ian
Lsym = I − D−1/2WD−1/2 symmetri
 normalized Lapla
ian105



Learning TheorySLT Statisti
al Learning Theory
F 
lass of 
andidate fun
tions/predi
tors from whi
h we 
hoose f
Fn restri
tion of F
R : F → R true risk
R̂ : F × Xn → R empiri
al risk
Q : F → R quality fun
tional
Qn : F × Xn → R empiri
al estimate of Q
f∗ = argminf∈F Q(f) true global optimizer in F
fn = argminf∈Fn

Qn(f) optimizer of Qn from Fn

ρ MarginDistan
e and Quality fun
tions
Ncut Normalized CutR
ut Ratio CutMin
ut Minimum CutWSS Within-sum-of-squaresBW Between-Within 
luster similarityED Eu
lidean distan
eCD Commute distan
eHT Hitting timeND Normalized 
ommute distan
eSND Symmetri
 normalized 
ommute distan
e
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Appendix BCorre
tion
SC NNCbreast-
an
er 0.11 ± 0.02 0.10 ± 0.02

0.22 ± 0.07 0.20 ± 0.07diabetis 0.03 ± 0.02 0.03 ± 0.02
0.04 ± 0.03 0.04 ± 0.04german 0.02 ± 0.02 0.02 ± 0.02
0.04 ± 0.08 0.03 ± 0.03heart 0.18 ± 0.03 0.17 ± 0.02
0.28 ± 0.03 0.28 ± 0.04spli
e 0.36 ± 0.10 0.43 ± 0.16
0.58 ± 0.09 0.66 ± 0.17b
w 0.02 ± 0.01 0.02 ± 0.01
0.04 ± 0.01 0.04 ± 0.03ionosphere 0.06 ± 0.02 0.04 ± 0.01
0.12 ± 0.11 0.12 ± 0.11pima 0.03 ± 0.03 0.03 ± 0.03
0.05 ± 0.04 0.04 ± 0.03
ell
y
le 0.12 ± 0.02 0.10 ± 0.01
0.16 ± 0.02 0.15 ± 0.02Table B.1: Corre
tion for Table 3.3. The values are very similar, only that the generalizationperforman
e of NNC is a
tually better than in the old table.
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